Skip to main content
Log in

Core-shell nanoparticles coated with molecularly imprinted polymers: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Core-shell surface molecular imprinting technology represents a rather new trend in analytical sciences. In this kind of material, the imprinting sites are located on the surface of the cores or shells of nanoparticles (NPs). This material can improve the capability of recognizing target molecules (analytes), reduce nonspecific adsorption, increase the relative adsorption capacity and selectivity, and accelerate the rate of mass transfer. This review (with 158 references) focuses on recent trends in core-shell MIPs. Following an introduction into the field, a first main section covers common core-materials including silica, magnetic NPs, quantum dots (including semiconductor quantum dots and carbon dots), gold and silver nanoclusters, and up-conversion materials. A further section covers the materials and reagents required for preparing MIPs (with subsections on templates, functional monomers, cross-linkers, initiators, and effects of solvent). A next main section covers synthetic approaches such as precipitation polymerization, emulsion polymerization, and grafting approach. A final section gives examples for applications of core-shell MIPs in analytical assays and in sensing.

This review (with 158 references) focuses on recent trends in core-shell nanoparticles coated with molecularly imprinted polymers (core-shell MIPs). Three significant synthesis methods are introduced: precipitation, emulsion and grafting approach. Applications of core-shell MIPs concentrate on solid phase extraction, fluorescent probe, surface-enhanced Raman scattering-based sensors and electrochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kan X, Zhao Q, Shao D, Geng Z, Wang Z, Zhu J-J (2010) Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. Journal of. Phys Chem B 114(11):3999–4004. doi:10.1021/jp910060c

    Article  CAS  Google Scholar 

  2. Dai H, Xiao DL, He H, Li H, Yuan DH, Zhang C (2015) Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta 182(5–6):893–908. doi:10.1007/s00604-014-1376-5

    Article  CAS  Google Scholar 

  3. Wu S, Tan L, Wang G, Peng G, Kang C, Tang Y (2013) Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analytical applications for serum samples. J Chromatogr A 1285:124–131. doi:10.1016/j.chroma.2013.02.039

    Article  CAS  Google Scholar 

  4. Volkert AA, Haes AJ (2014) Advancements in nanosensors using plastic antibodies. Analyst 139(1):21–31. doi:10.1039/c3an01725g

    Article  CAS  Google Scholar 

  5. Qiao L, Gan N, FT H, Wang D, Lan HZ, Li TH, Wang HF (2014) Magnetic nanospheres with a molecularly imprinted shell for the preconcentration of diethylstilbestrol. Microchim Acta 181(11–12):1341–1351. doi:10.1007/s00604-014-1257-y

    Article  CAS  Google Scholar 

  6. Aliakbari A, Amini MM, Mehrani K, Zadeh HRM (2014) Magnetic ion imprinted polymer NPs for the preconcentration of vanadium(IV) ions. Microchim Acta 181(15–16):1931–1938. doi:10.1007/s00604-014-1279-5

    Article  CAS  Google Scholar 

  7. Sadeghi S, Aboobakri E (2012) Magnetic NPs with an imprinted polymer coating for the selective extraction of uranyl ions. Microchim Acta 178(1–2):89–97. doi:10.1007/s00604-012-0800-y

    Article  CAS  Google Scholar 

  8. Yusof NNM, Tanioka E, Kobayashi T (2014) Molecularly imprinted polymer particles having coordinated hydrogen bonding in covalent-imprinting for efficient recognition towards vanillin. Separation and purification. Technology 122:341–349. doi:10.1016/j.seppur.2013.11.028

    Google Scholar 

  9. Yarman A, Dechtrirat D, Bosserdt M, Jetzschmann KJ, Gajovic-Eichelmann N, Scheller FW (2015) Cytochrome c-derived hybrid systems based on Moleculary imprinted polymers. Electroanalysis 27(3):573–586. doi:10.1002/elan.201400592

    Article  CAS  Google Scholar 

  10. Azodi-Deilami S, Najafabadi AH, Asadi E, Abdouss M, Kordestani D (2014) Magnetic molecularly imprinted polymer NPs for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Microchim Acta 181(15–16):1823–1832. doi:10.1007/s00604-014-1230-9

    Article  CAS  Google Scholar 

  11. Deng C, Zhong YP, He Y, Ge YL, Song GW (2016) Selective determination of trace bisphenol a using molecularly imprinted silica NPs containing quenchable fluorescent silver nanoclusters. Microchim Acta 183(1):431–439. doi:10.1007/s00604-015-1662-x

    Article  CAS  Google Scholar 

  12. Luo J, Cong JJ, Fang RX, Fei XM, Liu XY (2014) One-pot synthesis of a graphene oxide coated with an imprinted sol-gel for use in electrochemical sensing of paracetamol. Microchim Acta 181(11–12):1257–1266. doi:10.1007/s00604-014-1237-2

    Article  CAS  Google Scholar 

  13. Zhang LM, Li JP, Zeng Y (2015) Molecularly imprinted magnetic NPs for determination of the herbicide chlorotoluron by gate-controlled electro-catalytic oxidation of hydrazine. Microchim Acta 182(1–2):249–255. doi:10.1007/s00604-014-1326-2

    Article  CAS  Google Scholar 

  14. Halhalli MR, Schillinger E, Aureliano CSA, Sellergren B (2012) Thin walled imprinted polymer beads featuring both uniform and accessible binding sites. Chem Mater 24(15):2909–2919. doi:10.1021/cm300965t

    Article  CAS  Google Scholar 

  15. Fu G, He H, Chai Z, Chen H, Kong J, Wang Y, Jiang Y (2011) Enhanced lysozyme imprinting over NPs functionalized with carboxyl groups for noncovalent template sorption. Anal Chem 83(4):1431–1436. doi:10.1021/ac1029924

    Article  CAS  Google Scholar 

  16. Zhao M, Zhang C, Zhang Y, Guo X, Yan H, Zhang H (2014) Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample. Chem Commun 50(17):2208–2210. doi:10.1039/c3cc49131e

    Article  CAS  Google Scholar 

  17. Gu XH, Xu R, Yuan GL, Lu H, Gu BR, Xie HP (2010) Preparation of chlorogenic acid surface-imprinted magnetic NPs and their usage in separation of traditional Chinese medicine. Anal Chim Acta 675(1):64–70. doi:10.1016/j.aca.2010.06.033

    Article  CAS  Google Scholar 

  18. Liu C, Song Z, Pan J, Yan Y, Cao Z, Wei X, Gao L, Wang J, Dai J, Meng M, Yu P (2014) A simple and sensitive surface molecularly imprinted polymers based fluorescence sensor for detection of lambda-Cyhalothrin. Talanta 125:14–23. doi:10.1016/j.talanta.2014.02.062

    Article  CAS  Google Scholar 

  19. Tan L, He R, Chen KC, Peng RF, Huang C, Yang R, Tang YW (2016) Ultra-high performance liquid chromatography combined with mass spectrometry for determination of aflatoxins using dummy molecularly imprinted polymers deposited on silica-coated magnetic NPs. Microchim Acta 183(4):1469–1477. doi:10.1007/s00604-016-1790-y

    Article  CAS  Google Scholar 

  20. Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6(17):14745–14766. doi:10.1021/am5015056

  21. Tan CJ, Tong YW (2007) Molecularly imprinted beads by surface imprinting. Anal Bioanal Chem 389(2):369–376. doi:10.1007/s00216–007–1362-4

    Article  CAS  Google Scholar 

  22. Zhang Z, Chen L, Yang F, Li J (2014) Uniform core–shell molecularly imprinted polymers: a correlation study between shell thickness and binding capacity. RSC Adv 4 (60):31507. doi:10.1039/c4ra03282a

  23. Li S, Wu X, Zhang Q, Li P (2016) Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic NPs carrying a molecularly imprinted polymer and immobilized beta-cyclodextrin. Microchim Acta 183(4):1433–1439. doi:10.1007/s00604-016-1765-z

    Article  CAS  Google Scholar 

  24. Wang YZ, Li DY, He XW, Li WY, Zhang YK (2015) Epitope imprinted polymer NPs containing fluorescent quantum dots for specific recognition of human serum albumin. Microchim Acta 182(7–8):1465–1472. doi:10.1007/s00604-015-1464-1

    Article  CAS  Google Scholar 

  25. Wang Y, Liu Q, Rong F, Fu D (2011) A facile method for grafting of bisphenol a imprinted polymer shells onto poly(divinylbenzene) microspheres through precipitation polymerization. Appl Surf Sci 257(15):6704–6710. doi:10.1016/j.apsusc.2011.02.105

    Article  CAS  Google Scholar 

  26. Wackerlig J, Lieberzeit PA (2015) Molecularly imprinted polymer NPs in chemical sensing - Synthesis, characterisation and application. Sensors Actuators B-Chemical 207:144–157. doi:10.1016/j.snb.2014.09.094

    Article  CAS  Google Scholar 

  27. Moczko E, Guerreiro A, Piletska E, Piletsky S (2013) PEG-stabilized core-shell surface-imprinted NPs. Langmuir: the ACS journal of surfaces and colloids 29(31):9891–9896. doi:10.1021/la401891f

    Article  CAS  Google Scholar 

  28. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942. doi:10.1039/c0cs00084a

    Article  CAS  Google Scholar 

  29. Shiomi T, Matsui M, Mizukami F, Sakaguchi K (2005) A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 26(27):5564–5571. doi:10.1016/j.biomaterials.2005.02.007

    Article  CAS  Google Scholar 

  30. Jia X, Li H, Luo J, Lu Q, Peng Y, Shi L, Liu L, Du S, Zhang G, Chen L (2012) Rational design of core-shell molecularly imprinted polymer based on computational simulation and Doehlert experimental optimization: application to the separation of tanshinone IIA from Salvia miltiorrhiza Bunge. Anal Bioanal Chem 403(9):2691–2703. doi:10.1007/s00216–012–6078-4

    Article  CAS  Google Scholar 

  31. Lin Z, Xia Z, Zheng J, Zheng D, Zhang L, Yang H, Chen G (2012) Synthesis of uniformly sized molecularly imprinted polymer-coated silica NPs for selective recognition and enrichment of lysozyme. J Mater Chem 22 (34):17914. doi:10.1039/c2jm32734a

  32. Gao D, Zhang Z, Wu M, Xie C, Guan G, Wang D (2007) A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica NPs. Journal of the. Am Chem Soc 129(25):7859–7866. doi:10.1021/ja070975k

    Article  CAS  Google Scholar 

  33. Qian L, Hu X, Guan P, Wang D, Li J, Du C, Song R, Wang C, Song W (2015) The effectively specific recognition of bovine serum albumin imprinted silica NPs by utilizing a macromolecularly functional monomer to stabilize and imprint template. Anal Chim Acta 884:97–105. doi:10.1016/j.aca.2015.05.015

    Article  CAS  Google Scholar 

  34. Ma J, Yuan L, Ding M, Wang S, Ren F, Zhang J, Du S, Li F, Zhou X (2011) The study of core-shell molecularly imprinted polymers of 17beta-estradiol on the surface of silica NPs. Biosens Bioelectron 26(5):2791–2795. doi:10.1016/j.bios.2010.10.045

    Article  CAS  Google Scholar 

  35. Zhu R, Zhao W, Zhai M, Wei F, Cai Z, Sheng N, Hu Q (2010) Molecularly imprinted layer-coated silica NPs for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples. Anal Chim Acta 658(2):209–216. doi:10.1016/j.aca.2009.11.008

    Article  CAS  Google Scholar 

  36. Li Q, Yang K, Li S, Liu L, Zhang L, Liang Z, Zhang Y (2015) Preparation of surface imprinted core-shell particles via a metal chelating strategy: specific recognition of porcine serum albumin. Microchim Acta 183(1):345–352. doi:10.1007/s00604-015-1640-3

    Article  CAS  Google Scholar 

  37. Lu F, Yang J, Sun M, Fan L, Qiu H, Li X, Luo C (2012) Flow injection chemiluminescence sensor using core-shell molecularly imprinted polymers as recognition element for determination of dapsone. Anal Bioanal Chem 404(1):79–88. doi:10.1007/s00216–012–6088-2

    Article  CAS  Google Scholar 

  38. Xu S, Li J, Chen L (2011) Molecularly imprinted core-shell NPs for determination of trace atrazine by reversible addition–fragmentation chain transfer surface imprinting. J Mater Chem 21 (12):4346. doi:10.1039/c0jm03593a

  39. Xie L, Guo J, Zhang Y, Shi S (2014) Efficient determination of protocatechuic acid in fruit juices by selective and rapid magnetic molecular imprinted solid phase extraction coupled with HPLC. J Agric Food Chem 62(32):8221–8228. doi:10.1021/jf5021895

    Article  CAS  Google Scholar 

  40. Lu F, Li H, Sun M, Fan L, Qiu H, Li X, Luo C (2012) Flow injection chemiluminescence sensor based on core-shell magnetic molecularly imprinted NPs for determination of sulfadiazine. Anal Chim Acta 718:84–91. doi:10.1016/j.aca.2011.12.054

    Article  CAS  Google Scholar 

  41. Uzuriaga-Sanchez RJ, Khan S, Wong A, Picasso G, Pividori MI, Sotomayor MDT (2016) Magnetically separable polymer (mag-MIP) for selective analysis of biotin in food samples. Food Chem 190:460–467. doi:10.1016/j.foodchem.2015.05.129

    Article  CAS  Google Scholar 

  42. Plotka-Wasylka J, Szczepanska N, de la Guardia M, Namiesnik J (2016) Modern trends in solid phase extraction: new sorbent media. Trac-trends in. Anal Chem 77:23–43. doi:10.1016/j.trac.2015.10.010

    CAS  Google Scholar 

  43. Liu Y, He Y, Jin Y, Huang Y, Liu G, Zhao R (2014) Preparation of monodispersed macroporous core-shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid. J Chromatogr A 1323:11–17. doi:10.1016/j.chroma.2013.11.002

    Article  CAS  Google Scholar 

  44. Figueiredo L, Erny GL, Santos L, Alves A (2016) Applications of molecularly imprinted polymers to the analysis and removal of personal care products: a review. Talanta 146:754–765. doi:10.1016/j.talanta.2015.06.027

    Article  CAS  Google Scholar 

  45. Xiao D, Zhang C, Yuan D, He J, Wu J, Zhang K, Lin R, He H (2014) Magnetic solid-phase extraction based on Fe3O4 nanoparticle retrieval of chitosan for the determination of flavonoids in biological samples coupled with high performance liquid chromatography. Rsc. Advances 4(110):64843–64854. doi:10.1039/c4ra13369b

    CAS  Google Scholar 

  46. Zhang M, Zhang X, He X, Chen L, Zhang Y (2012) A self-assembled polydopamine film on the surface of magnetic NPs for specific capture of protein. Nanoscale 4(10):3141–3147. doi:10.1039/c2nr30316g

    Article  CAS  Google Scholar 

  47. He Y, Huang Y, Jin Y, Liu X, Liu G, Zhao R (2014) Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine. ACS Appl Mater Interfaces 6(12):9634–9642. doi:10.1021/am5020666

    Article  CAS  Google Scholar 

  48. Liu Y, Huang Y, Liu J, Wang W, Liu G, Zhao R (2012) Superparamagnetic surface molecularly imprinted NPs for water-soluble pefloxacin mesylate prepared via surface initiated atom transfer radical polymerization and its application in egg sample analysis. J Chromatogr A 1246:15–21. doi:10.1016/j.chroma.2012.01.045

    Article  CAS  Google Scholar 

  49. Dai J, Zhou Z, Zhao C, Wei X, Dai X, Gao L, Cao Z, Yan Y (2014) Versatile Method To Obtain Homogeneous Imprinted Polymer Thin Film at Surface of Superparamagnetic NPs for Tetracycline Binding. Ind Eng Chem Res 53(17):7157–7166. doi:10.1021/ie404140y

    Article  CAS  Google Scholar 

  50. Miao SS, Wu MS, Zuo HG, Jiang C, Jin SF, Lu YC, Yang H (2015) Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues. J Agric Food Chem 63(14):3634–3645. doi:10.1021/jf506239b

    Article  CAS  Google Scholar 

  51. Li Y, Ding MJ, Wang S, Wang RY, Wu XL, Wen TT, Yuan LH, Dai P, Lin YH, Zhou XM (2011) Preparation of imprinted polymers at surface of magnetic NPs for the selective extraction of tadalafil from medicines. ACS Appl Mater Interfaces 3(9):3308–3315. doi:10.1021/am2007855

    Article  CAS  Google Scholar 

  52. Xie X, Chen L, Pan X, Wang S (2015) Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue analysis. J Chromatogr A 1405:32–39. doi:10.1016/j.chroma.2015.05.068

    Article  CAS  Google Scholar 

  53. Tang Y, Gao J, Liu X, Lan J, Gao X, Ma Y, Li M, Li J (2016) Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC. Food Chem 201:72–79. doi:10.1016/j.foodchem.2016.01.070

    Article  CAS  Google Scholar 

  54. Jia X, Xu M, Wang Y, Ran D, Yang S, Zhang M (2013) Polydopamine-based molecular imprinting on silica-modified magnetic NPs for recognition and separation of bovine hemoglobin. Analyst 138(2):651–658. doi:10.1039/c2an36313e

    Article  CAS  Google Scholar 

  55. Gao R, Cui X, Hao Y, Zhang L, Liu D, Tang Y (2016) A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17beta-estradiol in milk. Food Chem 194:1040–1047. doi:10.1016/j.foodchem.2015.08.112

    Article  CAS  Google Scholar 

  56. Uzuriaga-Sanchez RJ, Khan S, Wong A, Picasso G, Pividori MI, Sotomayor Mdel P (2016) Magnetically separable polymer (mag-MIP) for selective analysis of biotin in food samples. Food Chem 190:460–467. doi:10.1016/j.foodchem.2015.05.129

    Article  CAS  Google Scholar 

  57. Xie L, Guo J, Zhang Y, Hu Y, You Q, Shi S (2015) Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum. Food Chem 178:18–25. doi:10.1016/j.foodchem.2015.01.069

    Article  CAS  Google Scholar 

  58. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36(6):993–1017. doi:10.1039/b609548h

    Article  CAS  Google Scholar 

  59. Lu Y, Su Y, Zhou Y, Wang J, Peng F, Zhong Y, Huang Q, Fan C, He Y (2013) In vivo behavior of near infrared-emitting quantum dots. Biomaterials 34(17):4302–4308. doi:10.1016/j.biomaterials.2013.02.054

    Article  CAS  Google Scholar 

  60. The Huy B, Seo MH, Zhang X, Lee YI (2014) Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosens Bioelectron 57:310–316. doi:10.1016/j.bios.2014.02.041

    Article  CAS  Google Scholar 

  61. Lv Y, Tan T, Svec F (2013) Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol Adv 31(8):1172–1186. doi:10.1016/j.biotechadv.2013.02.005

    Article  CAS  Google Scholar 

  62. Lin CI, Joseph AK, Chang CK, Lee YD (2004) Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells. Biosens Bioelectron 20(1):127–131. doi:10.1016/j.bios.2003.10.017

    Article  CAS  Google Scholar 

  63. Xiong Y, Deng C, Zhang X, Yang P (2015) Designed synthesis of aptamer-immobilized magnetic mesoporous silica/Au nanocomposites for highly selective enrichment and detection of insulin. ACS Appl Mater Interfaces 7(16):8451–8456. doi:10.1021/acsami.5b00515

    Article  CAS  Google Scholar 

  64. Fang G, Fan C, Liu H, Pan M, Zhu H, Wang S (2014) A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples. RSC Adv 4(6):2764–2771. doi:10.1039/c3ra45172k

    Article  CAS  Google Scholar 

  65. Wei X, Zhou Z, Hao T, Li H, Yan Y (2015) Molecularly imprinted polymer nanospheres based on Mn-doped ZnS QDs via precipitation polymerization for room-temperature phosphorescence probing of 2,6-dichlorophenol. RSC Adv 5(26):19799–19806. doi:10.1039/c4ra16542j

    Article  CAS  Google Scholar 

  66. Li DY, Qin YP, Li HY, He XW, Li WY, Zhang YK (2015) A "turn-on" fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach. Biosens Bioelectron 66:224–230. doi:10.1016/j.bios.2014.11.023

    Article  CAS  Google Scholar 

  67. Zhao Y, Ma Y, Li H, Wang L (2012) Composite QDs@MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem 84(1):386–395. doi:10.1021/ac202735v

    Article  CAS  Google Scholar 

  68. Liu H, Wu D, Liu Y, Zhang H, Ma T, Aidaerhan A, Wang J, Sun B (2015) Application of an optosensing chip based on molecularly imprinted polymer coated quantum dots for the highly selective and sensitive determination of sesamol in sesame oils. J Agric Food Chem 63(9):2545–2549. doi:10.1021/jf505790c

    Article  CAS  Google Scholar 

  69. Wang H-F, He Y, Ji T-R, Yan X-P (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81(4):1615–1621. doi:10.1021/ac802375a

    Article  CAS  Google Scholar 

  70. Ren X, Chen L (2015) Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens Bioelectron 64:182–188. doi:10.1016/j.bios.2014.08.086

    Article  CAS  Google Scholar 

  71. Ren X, Chen L (2015) Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples. Anal Bioanal Chem 407(26):8087–8095. doi:10.1007/s00216–015-8982-x

    Article  CAS  Google Scholar 

  72. Qiu C, Xing Y, Yang W, Zhou Z, Wang Y, Liu H, Xu W (2015) Surface molecular imprinting on hybrid SiO2-coated CdTe nanocrystals for selective optosensing of bisphenol a and its optimal design. Appl Surf Sci 345:405–417. doi:10.1016/j.apsusc.2015.03.150

    Article  CAS  Google Scholar 

  73. Yang YQ, He XW, Wang YZ, Li WY, Zhang YK (2014) Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin. Biosens Bioelectron 54:266–272. doi:10.1016/j.bios.2013.11.004

    Article  CAS  Google Scholar 

  74. Sha Y, Lou J, Bai S, Wu D, Liu B, Ling Y (2013) Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper(II) ions. Mater Res Bull 48(4):1728–1731. doi:10.1016/j.materresbull.2012.12.010

    Article  CAS  Google Scholar 

  75. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie S-Y, Sun Y-P (2007) Carbon dots for multiphoton bioimaging. Journal of the Am Chem Soc 129 (37):11318. doi:10.1021/ja073527l

  76. Mao Y, Bao Y, Han D, Li F, Niu L (2012) Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron 38(1):55–60. doi:10.1016/j.bios.2012.04.043

    Article  CAS  Google Scholar 

  77. Hou J, Li H, Wang L, Zhang P, Zhou T, Ding H, Ding L (2016) Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 146:34–40. doi:10.1016/j.talanta.2015.08.024

    Article  CAS  Google Scholar 

  78. Feng L, Tan L, Li H, Xu Z, Shen G, Tang Y (2015) Selective fluorescent sensing of alpha-amanitin in serum using carbon quantum dots-embedded specificity determinant imprinted polymers. Biosens Bioelectron 69:265–271. doi:10.1016/j.bios.2015.03.005

    Article  CAS  Google Scholar 

  79. Wang H, Yi J, Velado D, Yu Y, Zhou S (2015) Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH. ACS Appl Mater Interfaces 7(29):15735–15745. doi:10.1021/acsami.5b04744

    Article  CAS  Google Scholar 

  80. Atılır Özcan A, Ersöz A, Hür D, Yılmaz F, Gültekin A, Denizli A, Say R (2012) Semi-synthetic biotin imprinting onto avidin crosslinked gold–silver NPs. J Nanopart Res 14(6). doi:10.1007/s11051-012-0945-y

  81. Gu Y, Li N, Gao M, Wang Z, Xiao D, Li Y, Jia H, He H (2015) Microwave-assisted synthesis of BSA-modified silver NPs as a selective fluorescent probe for detection and cellular imaging of cadmium(II. Microchim Acta 182(7–8):1255–1261. doi:10.1007/s00604-014-1438-8

    Article  CAS  Google Scholar 

  82. Ahmad R, Griffete N, Lamouri A, Felidj N, Chehimi MM, Mangeney C (2015) Nanocomposites of gold NPs@molecularly imprinted polymers: chemistry, processing, and applications in sensors. Chem Mater 27(16):5464–5478. doi:10.1021/acs.chemmater.5b00138

    Article  CAS  Google Scholar 

  83. Gultekin A, Diltemiz SE, Ersoz A, Sariozlu NY, Denizli A, Say R (2009) Gold-silver nanoclusters having dipicolinic acid imprinted nanoshell for Bacillus Cereus spores recognition. Talanta 78(4–5):1332–1338. doi:10.1016/j.talanta.2009.02.007

    Article  CAS  Google Scholar 

  84. Gultekin A, Ersoz A, Denizli A, Say R (2012) Preparation of new molecularly imprinted nanosensor for cholic acid determination. Sensors Actuators B-Chemical 162(1):153–158. doi:10.1016/j.snb.2011.12.053

    Article  CAS  Google Scholar 

  85. Yu D, Zeng Y, Qi Y, Zhou T, Shi G (2012) A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosens Bioelectron 38(1):270–277. doi:10.1016/j.bios.2012.05.045

    Article  CAS  Google Scholar 

  86. Xue JQ, Li DW, Qu LL, Long YT (2013) Surface-imprinted core-shell Au NPs for selective detection of bisphenol A based on surface-enhanced Raman scattering. Anal Chim Acta 777:57–62. doi:10.1016/j.aca.2013.03.037

    Article  CAS  Google Scholar 

  87. Chang L, Ding Y, Li X (2013) Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications. Biosens Bioelectron 50:106–110. doi:10.1016/j.bios.2013.06.002

    Article  CAS  Google Scholar 

  88. Zhao L, Zhao F, Zeng B (2014) Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosens Bioelectron 62:19–24. doi:10.1016/j.bios.2014.06.022

    Article  CAS  Google Scholar 

  89. Guo Y, Kang L, Chen S, Li X (2015) High performance surface-enhanced Raman scattering from molecular imprinting polymer capsulated silver spheres. Phys Chem Chem Phys 17(33):21343–21347. doi:10.1039/c5cp00206k

    Article  CAS  Google Scholar 

  90. Lee K-T, Park J-H, Kwon SJ, Kwon H-K, Kyhm J, Kwak K-W, Jang HS, Kim SY, Han JS, Lee S-H, Shin D-H, Ko H, Han I-K, B-K J, Kwon S-H, Ko D-H (2015) Simultaneous enhancement of upconversion and downshifting luminescence via Plasmonic structure. Nano Lett 15(4):2491–2497. doi:10.1021/nl5049803

    Article  CAS  Google Scholar 

  91. Tang Y, Gao Z, Wang S, Gao X, Gao J, Ma Y, Liu X, Li J (2015) Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol. Biosens Bioelectron 71:44–50. doi:10.1016/j.bios.2015.04.005

    Article  CAS  Google Scholar 

  92. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–173. doi:10.1021/cr020357g

    Article  CAS  Google Scholar 

  93. Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS (2014) Upconversion NPs: from hydrophobic to hydrophilic surfaces. Accounts of chemical. Research 47(12):3481–3493. doi:10.1021/ar5002539

    CAS  Google Scholar 

  94. Li C, Lin J (2010) Rare earth fluoride nano−/microcrystals: synthesis, surface modification and application. Journal of. Mater Chem 20(33):6831–6847. doi:10.1039/c0jm00031k

    Article  CAS  Google Scholar 

  95. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion NPs in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854. doi:10.1039/c0an00144a

    Article  CAS  Google Scholar 

  96. Guo T, Deng Q, Fang G, Liu C, Huang X, Wang S (2015) Molecularly imprinted upconversion NPs for highly selective and sensitive sensing of Cytochrome c. Biosens Bioelectron 74:498–503. doi:10.1016/j.bios.2015.06.058

    Article  CAS  Google Scholar 

  97. Guo T, Deng Q, Fang G, Gu D, Yang Y, Wang S (2016) Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein. Biosens Bioelectron 79:341–346. doi:10.1016/j.bios.2015.12.040

    Article  CAS  Google Scholar 

  98. Schirhagl R (2014) Bioapplications for molecularly imprinted polymers. Anal Chem 86(1):250–261. doi:10.1021/ac401251j

    Article  CAS  Google Scholar 

  99. Lofgreen JE, Ozin GA (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem Soc Rev 43(3):911–933. doi:10.1039/c3cs60276a

    Article  CAS  Google Scholar 

  100. Abdin MJ, Altintas Z, Tothill IE (2015) In silico designed nanoMIP based optical sensor for endotoxins monitoring. Biosens Bioelectron 67:177–183. doi:10.1016/j.bios.2014.08.009

    Article  CAS  Google Scholar 

  101. Marestoni LD, Wong A, Feliciano GT, Marchi MRR, Tarley CRT, Sotomayor M (2016) Semi-empirical quantum chemistry method for pre-polymerization rational Design of Ciprofloxacin Imprinted Polymer and Adsorption Studies. Journal of the Brazilian. Chem Soc 27(1):109–118. doi:10.5935/0103-5053.20150256

    CAS  Google Scholar 

  102. Zeng H, Wang Y, Liu X, Kong J, Nie C (2012) Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin. Talanta 93:172–181. doi:10.1016/j.talanta.2012.02.008

    Article  CAS  Google Scholar 

  103. Wan W, Han Q, Zhang X, Xie Y, Sun J, Ding M (2015) Selective enrichment of proteins for MALDI-TOF MS analysis based on molecular imprinting. Chem Commun 51(17):3541–3544. doi:10.1039/c4cc10205c

    Article  CAS  Google Scholar 

  104. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63. doi:10.3389/fchem.2014.00063

  105. Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD (2013) Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal Chem 85(24):11944–11951. doi:10.1021/ac402848x

    Article  CAS  Google Scholar 

  106. Xia Z, Lin Z, Xiao Y, Wang L, Zheng J, Yang H, Chen G (2013) Facile synthesis of polydopamine-coated molecularly imprinted silica NPs for protein recognition and separation. Biosens Bioelectron 47:120–126. doi:10.1016/j.bios.2013.03.024

    Article  CAS  Google Scholar 

  107. Qu S, Wang X, Tong C, Wu J (2010) Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure. J Chromatogr A 1217(52):8205–8211. doi:10.1016/j.chroma.2010.10.097

    Article  CAS  Google Scholar 

  108. Xu L, Hu Y, Shen F, Li Q, Ren X (2013) Specific recognition of tyrosine-phosphorylated peptides by epitope imprinting of phenylphosphonic acid. J Chromatogr A 1293:85–91. doi:10.1016/j.chroma.2013.04.013

    Article  CAS  Google Scholar 

  109. Li W, Sun Y, Yang C, Yan X, Guo H, Fu G (2015) Fabrication of Surface Protein-Imprinted NPs Using a Metal Chelating Monomer via Aqueous Precipitation Polymerization. ACS Appl Mater Interfaces 7(49):27188–27196. doi:10.1021/acsami.5b07946

    Article  CAS  Google Scholar 

  110. Bereli N, Saylan Y, Uzun L, Say R, Denizli A (2011) L-histidine imprinted supermacroporous cryogels for protein recognition. Separation and purification. Technology 82:28–35. doi:10.1016/j.seppur.2011.08.011

    CAS  Google Scholar 

  111. Monier M, Abdel-Latif DA (2013) Synthesis and characterization of ion-imprinted chelating fibers based on PET for selective removal of Hg2 +. Chem Eng J 221:452–460. doi:10.1016/j.cej.2013.02.003

    Article  CAS  Google Scholar 

  112. Cetin K, Denizli A (2015) 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs. Colloids Surf B: Biointerfaces 126:401–406. doi:10.1016/j.colsurfb.2014.12.038

    Article  CAS  Google Scholar 

  113. Oezcan AA, Say R, Denizli A, Ersoez A (2006) L-histidine imprinted synthetic receptor for biochromatography applications. Anal Chem 78(20):7253–7258. doi:10.1021/ac060536o

    Article  CAS  Google Scholar 

  114. Chen H, Kong J, Yuan D, Fu G (2014) Synthesis of surface molecularly imprinted NPs for recognition of lysozyme using a metal coordination monomer. Biosens Bioelectron 53:5–11. doi:10.1016/j.bios.2013.09.037

    Article  CAS  Google Scholar 

  115. Li L, He X, Chen L, Zhang Y (2009) Preparation of core-shell magnetic molecularly imprinted polymer NPs for recognition of bovine hemoglobin. Chem Asian J 4(2):286–293. doi:10.1002/asia.200800300

    Article  CAS  Google Scholar 

  116. Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and NPs prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Anal Chim Acta 584(1):112–121. doi:10.1016/j.aca.2006.11.004

    Article  CAS  Google Scholar 

  117. Liang R, Kou L, Chen Z, Qin W (2013) Molecularly imprinted NPs based potentiometric sensor with a nanomolar detection limit. Sensors Actuators B Chem 188:972–977. doi:10.1016/j.snb.2013.07.110

    Article  CAS  Google Scholar 

  118. Muhammad T, Cui L, Jide W, Piletska EV, Guerreiro AR, Piletsky SA (2012) Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone. Anal Chim Acta 709:98–104. doi:10.1016/j.aca.2011.10.009

    Article  CAS  Google Scholar 

  119. Iskierko Z, Sharma PS, Bartold K, Pietrzyk-Le A, Noworyta K, Kutner W (2016) Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol Adv 34(1):30–46. doi:10.1016/j.biotechadv.2015.12.002

    Article  CAS  Google Scholar 

  120. Latorre AL, Perez MCC, Fernandez SF, Vilarino JML, Rodriguez MVG (2015) Selective removal of ATP degradation products from food matrices I: Design and characterization of a dummy molecularly imprinted specific sorbent for hypoxanthine. React Funct Polym 91–92:51–61. doi:10.1016/j.reactfunctpolym.2015.04.004

    Article  CAS  Google Scholar 

  121. Dong WG, Yan M, Zhang ML, Liu Z, Li YM (2005) A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer. Anal Chim Acta 542(2):186–192. doi:10.1016/j.aca.2005.03.032

    Article  CAS  Google Scholar 

  122. Su X, Li X, Li J, Liu M, Lei F, Tan X, Li P, Luo W (2015) Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of rhodamine B in food. Food Chem 171:292–297. doi:10.1016/j.foodchem.2014.09.024

    Article  CAS  Google Scholar 

  123. Liu Y, Hoshina K, Haginaka J (2010) Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization. Talanta 80(5):1713–1718. doi:10.1016/j.talanta.2009.10.011

    Article  CAS  Google Scholar 

  124. Perez N, Whitcombe MJ, Vulfson EN (2000) Molecularly imprinted NPs prepared by core-shell emulsion polymerization. Journal of Appl Polym Sci 77 (8):1851–1859. doi:10.1002/1097–4628(20000822)77:8<1851::aid-app23 > 3.0.co;2-j

  125. Poma A, Turner AP, Piletsky SA (2010) Advances in the manufacture of MIP NPs. Trends Biotechnol 28(12):629–637. doi:10.1016/j.tibtech.2010.08.006

    Article  CAS  Google Scholar 

  126. Wang Z, Cao X (2015) Preparation of core–shell molecular imprinting polymer for lincomycin a and its application in chromatographic column. Process Biochem 50(7):1136–1145. doi:10.1016/j.procbio.2015.04.013

    Article  CAS  Google Scholar 

  127. Ou H, Chen Q, Pan J, Zhang Y, Huang Y, Qi X (2015) Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion. J Hazard Mater 289:28–37. doi:10.1016/j.jhazmat.2015.02.030

    Article  CAS  Google Scholar 

  128. Yan H, Cheng X, Sun N (2013) Synthesis of multi-core-shell magnetic molecularly imprinted microspheres for rapid recognition of dicofol in tea. J Agric Food Chem 61(11):2896–2901. doi:10.1021/jf400847b

    Article  CAS  Google Scholar 

  129. Zhao M, Chen X, Zhang H, Yan H, Zhang H (2014) Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry. Biomacromolecules 15(5):1663–1675. doi:10.1021/bm500086e

    Article  CAS  Google Scholar 

  130. Li Q, Yang K, Liang Y, Jiang B, Liu J, Zhang L, Liang Z, Zhang Y (2014) Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy. ACS Appl Mater Interfaces 6(24):21954–21960. doi:10.1021/am5072783

    Article  CAS  Google Scholar 

  131. Zhang H, Jiang J, Zhang H, Zhang Y, Sun P (2013) Efficient synthesis of molecularly imprinted polymers with enzyme inhibition potency by the controlled surface imprinting approach. ACS Macro Lett 2(6):566–570. doi:10.1021/mz400062v

    Article  CAS  Google Scholar 

  132. Lin Z, Cheng W, Li Y, Liu Z, Chen X, Huang C (2012) A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A. Anal Chim Acta 720:71–76. doi:10.1016/j.aca.2012.01.020

    Article  CAS  Google Scholar 

  133. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45(8):2137–2211. doi:10.1039/c6cs00061d

    Article  CAS  Google Scholar 

  134. Fan J-P, X-K X, Xu R, Zhang X-H, Zhu J-H (2015) Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus x media. Chem Eng J 279:567–577. doi:10.1016/j.cej.2015.05.045

    Article  CAS  Google Scholar 

  135. Hua KC, Zhang L, Zhang ZH, Guo Y, Guo TY (2011) Surface hydrophilic modification with a sugar moiety for a uniform-sized polymer molecularly imprinted for phenobarbital in serum. Acta Biomater 7(8):3086–3093. doi:10.1016/j.actbio.2011.05.006

    Article  CAS  Google Scholar 

  136. Afzal A, Feroz S, Iqbal N, Mujahid A, Rehman A (2016) A collaborative effect of imprinted polymers and Au NPs on bioanalogous detection of organic vapors. Sensors Actuators B-Chemical 231:431–439. doi:10.1016/j.snb.2016.03.050

    Article  CAS  Google Scholar 

  137. Zhao P, Hao J (2015) 2,6-Diaminopyridine-imprinted polymer and its potency to hair-dye assay using graphene/ionic liquid electrochemical sensor. Biosens Bioelectron 64:277–284. doi:10.1016/j.bios.2014.09.016

    Article  CAS  Google Scholar 

  138. Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40(3):1547–1571. doi:10.1039/c0cs00049c

    Article  CAS  Google Scholar 

  139. Uzun L, Turner APF (2016) Molecularly-imprinted polymer sensors: realising their potential. Biosens Bioelectron 76:131–144. doi:10.1016/j.bios.2015.07.013

    Article  CAS  Google Scholar 

  140. Torkashvand M, Gholivand MB, Malekzadeh G (2016) Construction of a new electrochemical sensor based on molecular imprinting recognition sites on multiwall carbon nanotube surface for analysis of ceftazidime in real samples. Sensors Actuators B-Chemical 231:759–767. doi:10.1016/j.snb.2016.03.061

    Article  CAS  Google Scholar 

  141. Apodaca DC, Pernites RB, Ponnapati R, Del Mundo FR, Advincula RC (2011) Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol a. Macromolecules 44(17):6669–6682. doi:10.1021/ma2010525

    Article  CAS  Google Scholar 

  142. Wang Z, Li H, Chen J, Xue Z, Wu B, Lu X (2011) Acetylsalicylic acid electrochemical sensor based on PATP-AuNPs modified molecularly imprinted polymer film. Talanta 85(3):1672–1679. doi:10.1016/j.talanta.2011.06.067

    Article  CAS  Google Scholar 

  143. Yang Q, Sun Q, Zhou T, Shi G, Jin L (2009) Determination of parathion in vegetables by electrochemical sensor based on molecularly imprinted polyethyleneimine/silica gel films. J Agric Food Chem 57(15):6558–6563. doi:10.1021/jf901286e

    Article  CAS  Google Scholar 

  144. Mao Y, Bao Y, Gan SY, Li FH, Niu L (2011) Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens Bioelectron 28(1):291–297. doi:10.1016/j.bios.2011.07.034

    Article  CAS  Google Scholar 

  145. Nie DX, Jiang DW, Zhang D, Liang Y, Xue Y, Zhou TS, Jin LT, Shi GY (2011) Two-dimensional molecular imprinting approach for the electrochemical detection of trinitrotoluene. Sensors Actuators B-Chemical 156(1):43–49. doi:10.1016/j.snb.2011.03.071

    Article  CAS  Google Scholar 

  146. Pan MF, Fang GZ, Duan ZJ, Kong LJ, Wang S (2012) Electrochemical sensor using methimazole imprinted polymer sensitized with MWCNTs and Salen-Co(III) as recognition element. Biosens Bioelectron 31(1):11–16. doi:10.1016/j.bios.2011.09.008

    Article  CAS  Google Scholar 

  147. Irshad M, Iqbal N, Mujahid A, Afzal A, Hussain T, Sharif A, Ahmad E, Athar M (2013) Molecularly imprinted nanomaterials for sensor applications. Nanomaterials 3(4):615–637. doi:10.3390/nano3040615

    Article  CAS  Google Scholar 

  148. Shi H, Zhao J, Wang Y, Zhao G (2016) A highly selective and picomolar level photoelectrochemical sensor for PCB 101 detection in environmental water samples. Biosens Bioelectron 81:503–509. doi:10.1016/j.bios.2016.03.023

    Article  CAS  Google Scholar 

  149. Alizadeh T (2014) Preparation of magnetic TNT-imprinted polymer NPs and their accumulation onto magnetic carbon paste electrode for TNT determination. Biosens Bioelectron 61:532–540. doi:10.1016/j.bios.2014.05.041

    Article  CAS  Google Scholar 

  150. Li L, Fan LM, Dai YL, Kan XW (2015) Recognition and determination of bovine hemoglobin using a gold electrode modified with gold NPs and molecularly imprinted self-polymerized dopamine. Microchim Acta 182(15–16):2477–2483. doi:10.1007/s00604-015-1594-5

    Article  CAS  Google Scholar 

  151. Riskin M, Ben-Amram Y, Tel-Vered R, Chegel V, Almog J, Willner I (2011) Molecularly imprinted Au NPs composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal Chem 83(8):3082–3088. doi:10.1021/ac1033424

    Article  CAS  Google Scholar 

  152. Moczko E, Poma A, Guerreiro A, Perez de Vargas Sansalvador I, Caygill S, Canfarotta F, Whitcombe MJ, Piletsky S (2013) Surface-modified multifunctional MIP NPs. Nanoscale 5(9):3733–3741. doi:10.1039/c3nr00354j

    Article  CAS  Google Scholar 

  153. Xu L, Pan J, Xia Q, Shi F, Dai J, Wei X, Yan Y (2012) Composites of silica and molecularly imprinted polymers for degradation of sulfadiazine. J Phys Chem C 116(48):25309–25318. doi:10.1021/jp306654e

    Article  CAS  Google Scholar 

  154. Chao MR, Hu CW, Chen JL (2014) Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors. Biosens Bioelectron 61:471–477. doi:10.1016/j.bios.2014.05.058

    Article  CAS  Google Scholar 

  155. Guo Y, Yang Y, Zhang L, Guo TY (2011) Core/shell molecular imprinting microparticles prepared using RAFT technology for degradation of paraoxon. Macromol Res 19(11):1202–1209. doi:10.1007/s13233-011-1107-2

    Article  CAS  Google Scholar 

  156. Zhao P, Hao J (2013) Tert-butylhydroquinone recognition of molecular imprinting electrochemical sensor based on core-shell NPs. Food Chem 139(1–4):1001–1007. doi:10.1016/j.foodchem.2013.01.035

    Article  CAS  Google Scholar 

  157. Liu R, Guan G, Wang S, Zhang Z (2011) Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide. Analyst 136(1):184–190. doi:10.1039/c0an00447b

    Article  CAS  Google Scholar 

  158. Yin YM, Chen YP, Wang XF, Liu Y, Liu HL, Xie MX (2012) Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol A from water samples. J Chromatogr A 1220:7–13. doi:10.1016/j.chroma.2011.11.065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by 2015 annual Jiangsu province environmental protection scientific research subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua He.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, M., Pham-Huy, C. & He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183, 2677–2695 (2016). https://doi.org/10.1007/s00604-016-1930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1930-4

Keywords

Navigation