Skip to main content
Log in

Direct electrochemistry of immobilized hemoglobin and sensing of bromate at a glassy carbon electrode modified with graphene and β-cyclodextrin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the use of a nanocomposite consisting of graphene and β-cyclodextrin (β-CD) which was used to modify a glassy carbon electrode (GCE) to serve as a matrix for immobilization of hemoglobin (Hb). The composite was characterized by scanning electron microscopy, UV-vis and FTIR spectroscopy. The modified electrode displays an enhanced and well-defined quasi reversible peaks for the heme protein at a formal potential of −0.284 V (vs. Ag/AgCl). The direct electrochemistry of Hb is strongly enhanced at this modified electrode compared to electrodes not modified with graphene or β-CD. The heterogeneous electron transfer rate constant (Ks) is 3.18 ± 0.7 s−1 which indicates fast electron transfer. The biosensor exhibits excellent electrocatalytic activity towards the reduction of bromate, with a linear amperometric response in the 0.1 to 176.6 μM concentration range at a working voltage of −0.33 V. The sensitivity is 3.39 μA μM−1 cm−2, and the detection limit is 33 nM. The biosensor is fast, selective, well repeatable and reproducible, and therefore represents a viable platform for sensing bromate in aqueous samples.

Electrochemical sensing of bromate at hemoglobin immobilized on graphene and β-cyclodextrin composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marák J, Staňová A, Vaváková V, Hrenáková M, Kaniansky D (2012) On-line capillary isotachophoresis–capillary zone electrophoresis analysis of bromate in drinking waters in an automated analyzer with coupled columns and photometric detection. J Chromatogr A 1267:252–258

    Article  Google Scholar 

  2. Saraji M, Khaje N, Ghani M (2014) Cetyltrimethylammonium-coated magnetic nanoparticles for the extraction of bromate, followed by its spectrophotometric determination. Microchim Acta 181:925–933

    Article  CAS  Google Scholar 

  3. Oliveira SM, Oliveira HM, Segundo MA, Rangel AOSS, Lima JLFC, Cerdà V (2012) Automated solid-phase spectrophotometric system for optosensing of bromate in drinking waters. Anal Methods 4:1229–1236

    Article  CAS  Google Scholar 

  4. Mao R, Zhao X, Lan H, Liu H, Qu J (2015) Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor. Water Res 77:1–12

    Article  CAS  Google Scholar 

  5. Zhang J, Yang X (2013) A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in drinking water. Analyst 138:434–437

    Article  CAS  Google Scholar 

  6. Romele L (1998) Spectrophotometric determination of low levels of bromate in drinking water after reaction with fuchsin. Analyst 123:291–294

    Article  CAS  Google Scholar 

  7. Cavalli S, Polesello S, Valsecchi S (2005) Chloride interference in the determination of bromate in drinking water by reagent free ion chromatography with mass spectrometry detection. J Chromatogr A 1085:42–46

    Article  CAS  Google Scholar 

  8. Snyder SA, Vanderford BJ, Rexing DJ (2005) Trace analysis of bromate, chlorate, iodate, and perchlorate in natural and bottled waters. Environ Sci Technol 39:4586–4593

    Article  CAS  Google Scholar 

  9. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host − guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010

    Article  CAS  Google Scholar 

  10. Papagiannia GG, Stergioua DV, Armatasb GS, Kanatzidisc MG, Prodromidis MI (2012) Synthesis, characterization and performance of polyaniline–polyoxometalates (XM12, X = P, Si and M = Mo, W) composites as electrocatalysts of bromates. Sensors Actuators B Chem 173:346–353

    Article  Google Scholar 

  11. Qi H, Zhang C, Li X (2006) Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin. Sensors Actuators B Chem 114:364–370

    Article  CAS  Google Scholar 

  12. Li J, Mei H, Zheng W, Pan P, Sun XJ, Li F, Guo F, Zhou HM, Ma JY, Xu XX, Zheng YF (2014) A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids Surf B 118:77–82

    Article  CAS  Google Scholar 

  13. Vilian ATE, Chen SM, Kwak CH, Hwang SK, Huh YS, Han YK (2016) Immobilization of hemoglobin on functionalized multiwalled carbon nanotubes-Poly-L-Histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2. Sensors Actuators B 224:607–617

    Article  CAS  Google Scholar 

  14. Xu J, Liu C, Wu Z (2011) Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film. Microchim Acta 172:425–430

    Article  CAS  Google Scholar 

  15. Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J (2015) An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian bluechitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron 65:23–30

    Article  CAS  Google Scholar 

  16. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  Google Scholar 

  17. Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-warthan AA, Treme W (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3:18753–18808

    Article  CAS  Google Scholar 

  18. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  19. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  20. Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172

    Article  CAS  Google Scholar 

  21. Zhou W, Li W, Xie Y, Wang L, Pan K, Tian G, Li M, Wang G, Qu Y, Fu H (2014) Fabrication of noncovalently functionalized brick-like β-cyclodextrins/graphene composite dispersions with favorable stability. RSC Adv 4:2813–2819

    Article  CAS  Google Scholar 

  22. Mathapa BG, Paunov VN (2013) Cyclodextrin stabilised emulsions and cyclodextrinosomes. Phys Chem Chem Phys 15:17903–17914

    Article  CAS  Google Scholar 

  23. Karuppiah C, Palanisamy S, Chen SM, Veeramani V, Periakaruppan P (2014) Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Microchim Acta 181:1843–1850

    Article  CAS  Google Scholar 

  24. Palanisamy S, Sakthinathan S, Chen SM, Thirumalraj B, Wu TH, Lou BS, Liu XH (2016) Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine. Carbohydr Polym 135:267–273

    Article  CAS  Google Scholar 

  25. Palanisamy S, Cheemalapati S, Chen SM (2012) Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode. Anal Biochem 429:108–115

    Article  CAS  Google Scholar 

  26. Ren L, Dong J, Cheng X, Xu J, Hu P (2013) Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite. Microchim Acta 180:1333–1340

    Article  CAS  Google Scholar 

  27. Li P, Ding Y, Lu ZY, Li Y, Zhu XS, Zhou YM, Tang YW, Chen Y, Cai CX, Lu TH (2013) Direct electrochemistry of hemoglobin immobilized on the water-soluble phosphonate functionalized multi-walled carbon nanotubes and its application to nitric oxide biosensing. Talanta 115:228–234

    Article  CAS  Google Scholar 

  28. Sun W, Guo Y, Ju X, Zhang Y, Wang X, Sun Z (2013) Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis. Biosens Bioelectron 42:207–213

    Article  CAS  Google Scholar 

  29. Palanisamy S, Karuppiah C, Chen SM, Periakaruppan P (2014) A highly sensitive and selective enzymatic biosensor based on direct electrochemistry of hemoglobin at zinc oxide nanoparticles modified activated screen printed carbon electrode. Electroanalysis 26:1984–1993

    Article  CAS  Google Scholar 

  30. Xie L, Xu Y, Cao X (2013) Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids Surf B 107:245–250

    Article  CAS  Google Scholar 

  31. Chen PY, Yang HH, Huang CC, Chen YH, Shih Y (2015) Involvement of Cu(II) in the electrocatalytic reduction of bromate on a disposable nano-copper oxide modified screen-printed carbon electrode: hair waving products as an example. Electrochim Acta 161:100–107

    Article  CAS  Google Scholar 

  32. Zhou DD, Ding L, Cui H, An H, Zhai JP, Li Q (2012) Fabrication of high dispersion Pd/MWNTs nanocomposite and its electrocatalytic performance for bromate determination. Chem Eng J 200–202:32–38

    Article  Google Scholar 

  33. Salimia A, MamKhezri H, Hallaj R, Zandi S (2007) Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: application to chlorate, bromate and iodate detection. Electrochim Acta 52:6097–6105

    Article  Google Scholar 

  34. Thangamuthu R, Wu YC, Chen SM (2009) Silicomolybdate-incorporated-glutaraldehyde- cross-linked poly-L-lysine film modified glassy carbon electrode as amperometric sensor for bromate determination. Electroanalysis 21:1655–1658

    Article  CAS  Google Scholar 

  35. Marafon E, Kubota LT, Gushikem Y (2009) FAD-modified SiO2/ZrO2/C ceramic electrode for electrocatalytic reduction of bromate and iodate. J Solid State Electrochem 13:377–383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Council and the Ministry of Education of Taiwan (Republic of China). The financial supports of this work by the Ministry of Science and Technology (MOST), Taiwan (MOST-104-2410-H-182-015 to BSL and NSC101-2113-M-027-001-MY3 to SMC) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

ESM 1

(DOCX 905 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, S., Wang, YT., Chen, SM. et al. Direct electrochemistry of immobilized hemoglobin and sensing of bromate at a glassy carbon electrode modified with graphene and β-cyclodextrin. Microchim Acta 183, 1953–1961 (2016). https://doi.org/10.1007/s00604-016-1811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1811-x

Keywords

Navigation