Skip to main content
Log in

G-quadruplex based impedimetric 2-hydroxyfluorene biosensor using hemin as a peroxidase enzyme mimic

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a sensitive and selective biosensor for the environmental metabolite 2-hydroxyfluorene (2-HOFlu). It is based on electrochemical impedance spectroscopy and was obtained by assembling a thiolated single-stranded DNA on a gold electrode via S-Au covalent bonding. It is then transformed to a K+-stabilized G-quadruplex-hemin complex which exhibits peroxidase-like activity to catalyze the oxidation of 2-HOFlu by H2O2. This results in the formation of insoluble products that are precipitated on the gold electrode. As a result, the charge transfer resistance (R CT) between the solution and the electrode surface is strongly increased within 10 min as demonstrated by using the ferro/ferricyanide system as a redox probe. The difference in the charge transfer resistances (ΔR CT) before and after incubation of the DNA film with 2-HOFlu and H2O2 serves as the signal for the quantitation of 2-HOFlu with a 1.2. nM detection limit in water of pH 7.4. The assay is highly selective over other selected fluorene derivatives. It was exploited to determine 2-HOFlu in spiked lake water samples where it displayed a detection limit of 3.6 nM. Conceivably, this method has a wide scope in that it may be applied to other analytes for which respective G-quadruplexes are available.

A G-quadruplex DNAzyme based impedimetric biosensor for sensitive detection of 2-hydroxyfluorene using hemin as a peroxidase enzyme mimic was constructed with a detection limit of 1.2 nM in water and 3.6 nM in spiked lake water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ma L, Chu S, Wang X, Cheng H, Liu X, Xu X (2005) Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere 58:1355

    Article  CAS  Google Scholar 

  2. Yin C, Jiang X, Yang X, Bian Y, Wang F (2008) Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China. Chemosphere 73:389

    Article  CAS  Google Scholar 

  3. Wu H, Xue Y, You Q, Huang Q, Ou J (2009) Analysis of pyrolysis components of biomass tar by GC-MS. Chem Eng Oil Gas 38:72

    CAS  Google Scholar 

  4. Sepic E, Bricelj M, Leskovsek H (2003) Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms. Chemosphere 52:1125

    Article  CAS  Google Scholar 

  5. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1

    Article  CAS  Google Scholar 

  6. Luan TG, Yu KSH, Zhong Y, Zhou HW, Lan CY, Tam NFY (2006) Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere 65:2289

    Article  CAS  Google Scholar 

  7. Toriba A, Chetiyanukornkul T, Kizu R, Hayakawa K (2003) Quantification of 2-hydroxyfluorene in human urine by column-switching high performance liquid chromatography with fluorescence detection. Analyst 128:605

    Article  CAS  Google Scholar 

  8. Chetiyanukornkul T, Toriba A, Kizu R, Hayakawa K (2004) Urinary 2-hydroxyfluorene and 1-hydroxypyrene levels in smokers and nonsmokers in Japan and Thailand. Polycycl Aromat Compd 24:467

    Article  CAS  Google Scholar 

  9. Kamiya M, Toriba A, Onoda Y, Kizu R, Hayakawa K (2005) Evaluation of estrogenic activities of hydroxylated polycyclic aromatic hydrocarbons in cigarette smoke condensate. Food Chem Toxicol 43:1017

    Article  CAS  Google Scholar 

  10. Campo L, Rossella F, Fustinoni S (2008) Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects. J Chromatogr B 875:531

    Article  CAS  Google Scholar 

  11. Ding YP, Liu WL, Wu QS, Wang XG (2005) Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J Electroanal Chem 575:275

    Article  CAS  Google Scholar 

  12. Zhu G, Gai P, Wu L, Zhang J, Zhang X, Chen J (2012) β-cyclodextrin-platinum nanoparticles/graphene nanohybrids: enhanced sensitivity for electrochemical detection of naphthol isomers. Chem Asian J 7:732

    Article  CAS  Google Scholar 

  13. Wang Y, Wang J, Yang F, Yang X (2010) Spectrophotometric detection of lead (II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim Acta 171:195

    Article  CAS  Google Scholar 

  14. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192

    Article  CAS  Google Scholar 

  15. Wang P, Mai Z, Dai Z, Zou X (2010) Investigation of DNA methylation by direct electrocatalytic oxidation. Chem Commun 46:7781

    Article  CAS  Google Scholar 

  16. Andreescu S, Sadik OA (2004) Trends and challenges in biochemical sensors for clinical and environmental monitoring. Pure Appl Chem 76:861

    Article  CAS  Google Scholar 

  17. Vestergaard M, Kerman K, Tamiya E (2007) An overview of label-free electrochemical protein sensors. Sensors 7:3442

    Article  CAS  Google Scholar 

  18. Wu LD, Lu X, Jin JB, Zhang HJ, Chen JP (2011) Electrochemical DNA biosensor for screening of chlorinated benzene pollutants. Biosens Bioelectron 26:4040

    Article  CAS  Google Scholar 

  19. Liang G, Li T, Li XH, Liu XH (2013) Electrochemical detection of the amino-substituted naphthalene compounds based on intercalative interaction with hairpin DNA by electrochemical impedance spectroscopy. Biosens Bioelectron 48:238

    Article  CAS  Google Scholar 

  20. Wang GL, Zhou LY, Luo HQ, Li NB (2013) Electrochemical strategy for sensing DNA methylation and DNA methyltransferase activity. Anal Chim Acta 768:76

    Article  CAS  Google Scholar 

  21. Luo L, Zhang Z, Ding Y, Deng D, Zhu X, Wang Z (2013) Label-free electrochemical impedance genosensor based on 1-aminopyrene/graphene hybrids. Nanoscale 5:5833

    Article  CAS  Google Scholar 

  22. Li X, Shen L, Zhang D, Qi H, Gao Q, Ma F, Zhang C (2008) Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions. Biosens Bioelectron 23:1624

    Article  CAS  Google Scholar 

  23. Bogomolova A, Komarova E, Reber K, Gerasimov T, Yavuz O, Bhatt S, Aldissi M (2009) Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal Chem 81:3944

    Article  CAS  Google Scholar 

  24. Chen Z, Li L, Zhao H, Guo L, Mu X (2011) Electrochemical impedance spectroscopy detection of lysozyme based on electrodeposited gold nanoparticles. Talanta 83:1501

    Article  CAS  Google Scholar 

  25. Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, Willner I (2004) Catalytic beacons for the detection of DNA and telomerase activity. J Am Chem Soc 126:7430

    Article  CAS  Google Scholar 

  26. Pavlov V, Xiao Y, Gill R, Dishon A, Kotler M, Willner I (2004) Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal Chem 76:2152

    Article  CAS  Google Scholar 

  27. Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707:7

    Article  CAS  Google Scholar 

  28. Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153

    Article  CAS  Google Scholar 

  29. Zhou XH, Kong DM, Shen HX (2010) G-quadruplex-hemin DNAzyme-amplified colorimetric detection of Ag+ ion. Anal Chim Acta 678:124

    Article  CAS  Google Scholar 

  30. Liu X, Freeman R, Golub E, Willner I (2011) Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano 5:7648

    Article  CAS  Google Scholar 

  31. Won BY, Shin S, Fu RZ, Shin SC, Cho DY, Park HG (2011) A one-step electrochemical method for DNA detection that utilizes a peroxidase-mimicking DNAzyme amplified through PCR of target DNA. Biosens Bioelectron 30:73

    Article  CAS  Google Scholar 

  32. Patolsky F, Lichtenstein A, Willner I (2003) Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes. Chem Eur J 9:1137

    Article  CAS  Google Scholar 

  33. Li XH, Zhou Y, Sutherland TC, Baker B, Lee JS, Kraatz HB (2005) Chip-based microelectrodes for detection of single-nucleotide mismatch. Anal Chem 77:5766

    Article  CAS  Google Scholar 

  34. Liang G, Li XH, Liu XH (2013) Electrochemical detection of 9-hydroxyfluorene based on the direct interaction with hairpin DNA. Analyst 138:1032

    Article  CAS  Google Scholar 

  35. Orbach R, Willner B, Willner I (2015) Catalytic nucleic acids (DNAzymes) as functional units for logic gates and computing circuits: from basic principles to practical applications. Chem Commun. doi:10.1039/C1034CC09874A

    Google Scholar 

  36. Liu L, Liang Z, Li Y (2012) Label free, highly sensitive and selective recognition of small molecule using gold surface confined aptamers. Solid State Sci 14:1060

    Article  CAS  Google Scholar 

  37. Yin H (2012) Amplified electrochemical microRNA biosensor using hemin-G-quadruplex complex as the sensing element. Analyst 27:7140

    Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the National Science Foundation for Innovative Research Group (51121003) and the National Natural Science Foundation of China (21377013), Major State Basic Research Development Program (2013CB430405) and Fundamental Research Funds for the Central Universities and the China Postdoctoral Science Foundation (2014 M550854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhui Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Liu, X. G-quadruplex based impedimetric 2-hydroxyfluorene biosensor using hemin as a peroxidase enzyme mimic. Microchim Acta 182, 2233–2240 (2015). https://doi.org/10.1007/s00604-015-1565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1565-x

Keywords

Navigation