Skip to main content
Log in

Fluorescence energy transfer-based multiplexed hybridization assay using gold nanoparticles and quantum dot conjugates on photonic crystal beads

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A multiplexed assay strategy was developed for the detection of nucleic acid hybridization. It is based on fluorescence resonance energy transfer (FRET) between gold nanoparticles (AuNPs) and multi-sized quantum dots (QDs) deposited on the surface of silica photonic crystal beads (SPCBs). The SPCBs were first coated with a three-layer primer film formed by the alternating adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrensulfonate). Probe DNA sequences were then covalently attached to the carboxy groups at the surface of the QD-coated SPCBs. On addition of DNA-AuNPs and hybridization, the fluorescence of the donor QDs is quenched because of the close proximity of the AuNPs. However, the addition of target DNA causes a recovery of the fluorescence of the QD-coated SPCBs, thus enabling the quantitative assay of hybridized DNA. Compared to fluorescent dyes acting as acceptors, the use of AuNPs results in much higher quenching efficiency. The multiplexed assay displays a wide linear range, high sensitivity, and very little cross-reactivity. This work, where such SPCBs are used for the first time in a FRET assay, is deemed to present a new and viable approach towards high-throughput multiplexed gene assays.

A novel fluorescence energy transfer system was constructed for the multiplexed hybridization assay using gold nanoparticles and quantum dot conjugates on silica photonic crystal beads

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han MY, Gao XH, Su JZ, Nie SM (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631

    Article  CAS  Google Scholar 

  2. Qian J, Dai HC, Pan XH, Liu SQ (2011) Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosens Bioelectron 28:314

    Article  CAS  Google Scholar 

  3. Yang ZJ, Liu H, Zong C, Yan F, Ju HX (2009) Automated support-resolution strategy for a one-way chemiluminescent multiplex immunoassay. Anal Chem 81:5484

    Article  CAS  Google Scholar 

  4. Yuan L, Xu LL, Liu SQ (2012) Integrated tyramide and polymerization-assisted signal amplification for a highly-sensitive immunoassay. Anal Chem 84:10737

    Article  CAS  Google Scholar 

  5. Wu YF, Chen CL, Liu SQ (2009) Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem 81:1600

    Article  CAS  Google Scholar 

  6. Nolan JP, Sklar LA (2002) Suspension array technology: evolution of the flat-array paradigm. Trends Biotechnol 20:9

    Article  CAS  Google Scholar 

  7. Christodoulides N, Mohanty S, Miller CS, Langub MC, Floriano PN, Dharshan P, Ali MF, Bernard B, Romanovicz D, Anslyn E, Fox PC, McDevitt JT (2005) Application of microchip assay system for the measurement of C-reactive protein in human saliva. Lab Chip 5:261

    Article  CAS  Google Scholar 

  8. Christodoulides N, Tran M, Floriano PN, Rodriguez M, Goodey A, Ali M, Neikirk D, McDevitt JT (2002) A microchip-based multianalyte assay system for the assessment of cardiac risk. Anal Chem 74:3030

    Article  CAS  Google Scholar 

  9. Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315:1393

    Article  CAS  Google Scholar 

  10. Chen LY, Chen CL, Li RN, Li Y, Liu SQ (2009) CdTe quantum dot functionalized silica nanosphere labels for ultrasensitive detection of biomarker. Chem Commun 19:2670

    Article  Google Scholar 

  11. Qian J, Zhang CY, Cao XD, Liu SQ (2010) Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification. Anal Chem 82:6422

    Article  CAS  Google Scholar 

  12. Lee JA, Mardyani S, Hung A, Rhee A, Klostranec J, Mu Y, Li D, Chan WCW (2007) Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer. Adv Mater 19:3113

    Article  CAS  Google Scholar 

  13. Zhao XW, Cao Y, Ito F, Chen HH, Nagai K, Zhao YH, Gu ZZ (2006) Colloidal crystal beads as supports for biomolecular screening. Angew Chem Int Ed 45:6835

    Article  CAS  Google Scholar 

  14. Zhao YJ, Zhao XW, Hu J, Xu M, Zhao WJ, Sun LG, Zhu C, Xu H, Gu ZZ (2008) Encoded porous beads for label-free multiplex detection of tumor markers. Adv Mater 21:569

    Article  CAS  Google Scholar 

  15. Zhao YJ, Zhao XW, Gu ZZ (2010) Photonic crystals in bioassays. Adv Funct Mater 20:2970

    Article  CAS  Google Scholar 

  16. Endo T, Ueda C, Kajita H, Okuda N, Tanaka S, Hisamoto H (2013) Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystal. Microchim Acta 180:929

    Article  CAS  Google Scholar 

  17. GuoY YJY, Divin C, Huang B, Thomas TP, Baker JR, Norris TB (2010) Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. Anal Chem 82:5211

    Article  Google Scholar 

  18. Rivolo P, Michelotti F, Frascella F, Digregorio G, Mandracci P, Dominici L, Giorgis F, Descrovi E (2012) Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves. Sensors Actuators B 161:1046

    Article  CAS  Google Scholar 

  19. Park TJ, Lee SK, Yoo SM, Yang SM, Lee SY (2011) Development of reflective biosensor using fabrication of functionalized photonic nanocrystals. J Nanosci Nanotechnol 11:632

    Article  CAS  Google Scholar 

  20. Cunin F, Schmedake TA, Link JR, Li YY, Koh J, Bhatia SN, Sailor MJ (2002) Biomolecular screening with encoded porous-silicon photonic crystals. Nat Mater 1:39

    Article  CAS  Google Scholar 

  21. Li MZ, He F, Liao Q, Liu J, Xu L, Jiang L, Song YL, Wang S, Zhu DB (2008) Ultrasensitive DNA detection using photonic crystals. Angew Chem Int Ed 47:7258

    Article  CAS  Google Scholar 

  22. Algar WR, Krull UJ (2009) Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 81:4113

    Article  CAS  Google Scholar 

  23. Wei MY, Guo LH, Famouri P (2011) DNA biosensors based on metallo-intercalator probes and electrocatalytic amplification. Microchim Acta 172:247

    Article  CAS  Google Scholar 

  24. Zekavati R, Safi S, Hashemi SJ, Rahmani-Cherati T, Tabatabaei M, Mohsenifar A, Bayat M (2013) Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchim Acta 168:221

    Google Scholar 

  25. Kim YP, Oh YH, Oh E, Ko S, Han MK, Kim HS (2008) Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal Chem 80:4634

    Article  CAS  Google Scholar 

  26. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional dono-acceptor combinations. Angew Chem Int Ed 45:4562

    Article  CAS  Google Scholar 

  27. Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim HS (2005) Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc 127:3270

    Article  CAS  Google Scholar 

  28. Zeng QH, Zhang YL, Liu XM, Tu LP, Kong XG, Zhang H (2012) Multiple homogeneous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform. Chem Commun 48:1781

    Article  CAS  Google Scholar 

  29. Li J, Zhao XW, Zhao YJ, Gu ZZ (2009) Quantum-dot-coated encoded silica colloidal crystals beads for multiplex coding. Chem Commun 17:2329

    Article  Google Scholar 

  30. Li J, Zhao XW, Zhao YJ, Hu J, Xu M, Gu ZZ (2009) Colloidal crystal beads coated with multicolor CdTe quantum dots: microcarriers for optical encoding and fluorescence enhancement. J Meter Chem 19:6492

    Article  CAS  Google Scholar 

  31. Ge CW, Xu M, Liu J, Lei JP, Ju HX (2008) Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor. Chem Commun 4:450

    Article  Google Scholar 

  32. Zhao YJ, Zhao XW, Sun C, Li J, Zhu R, Gu ZZ (2008) Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal Chem 80:1598

    Article  CAS  Google Scholar 

  33. Staros JV, Wright RW, Swingle DM (1986) Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem 156:220

    Article  CAS  Google Scholar 

  34. Algar WR, Krull UJ (2011) Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Anal Chem 82:400

    Article  Google Scholar 

  35. Qiu T, Zhang B, Hu ZY, Tang JH, Xie HP, Gu BR (2012) Detection of DNA based on fluorescence resonance energy transfer of polyelectrolyte-protected CdTe quantum dots as energy donors. Analyst 137:2608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Nos. 21103148, 21273195), Postdoctoral Science Foundation of China (Nos. 20110491462, 2012T50519), the Priority Academic Program Development of Jiangsu Higher Education Institution, Jiangsu Province for Specially Appointed Professorship to Dr. P.Z. Zhu, and University Natural Science Foundation of Jiangsu Province (13KJB150039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Li or Guowang Diao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 79.1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Qi, H., Wang, H. et al. Fluorescence energy transfer-based multiplexed hybridization assay using gold nanoparticles and quantum dot conjugates on photonic crystal beads. Microchim Acta 181, 1109–1115 (2014). https://doi.org/10.1007/s00604-014-1217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1217-6

Keywords

Navigation