Skip to main content

Advertisement

Log in

Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrochemiluminescence (ECL) integrates the advantages of electrochemical detection and chemiluminescent techniques. The method has received particular attention because it is highly sensitive and selective, has a wide linear range but low reagent costs. The use of nanomaterials with their unique physical and chemical properties has led to new kinds of biosensors that exhibit high sensitivity and stability. Compared to other nanomaterials, DNA nanostructures are more biocompatible, more hydrophilic, and thus less prone to nonspecific adsorption onto the electrode surface. We describe here a label-free and ultrasensitive ECL biosensor for detecting a cancer-associated microRNA at a femtomolar level. We have designed two auxiliary probes that cause the formation of a long-range self-assembly in the form of a μm-long 1-dimensional DNA concatamer. These can be used as carriers for signal amplification. The intercalation of the ECL probe Ru(phen)3 2+ into the grooves of the concatamers leads to a substantial increase in ECL intensity. This amplified sensor shows high selectivity for discriminating complementary target and other mismatched RNAs. The biosensor enables the quantification of the expression of microRNA-21 in MCF-7 cells. It also displays very low limits of detection and provides an alternative approach for the detection of RNA or DNA detection in diagnostics and gene analysis.

The long-range self-assembly DNA concatamers were used as carriers for signal amplification by the intercalation of numerous ECL probe (Ru(phen)3 2+) into the grooves of the DNA concatamers. Such signal amplification strategy lead to a substantial increase in ECL intensity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dai H, Wang YM, Wu XP, Zhang L, Chen GN (2009) An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode. Biosens Bioelectron 24:1230–1234

    Article  CAS  Google Scholar 

  2. Li JX, Yang LX, Luo SL, Chen BB, Li J, Lin HL, Cai QY, Yao SZ (2010) Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO2 nanotubes. Anal Chem 82:7357–7361

    Article  CAS  Google Scholar 

  3. Tang CX, Zhao Y, He XW, Yin XB (2010) A “turn-on” electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)3 2+ into ds-DNA. Chem Commun 46:9022–9024

    Article  CAS  Google Scholar 

  4. Yuan T, Liu ZY, Hu LZ, Zhang L, Xu GB (2011) Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg2+. Chem Commun 47:11951–11953

    Article  CAS  Google Scholar 

  5. Gao A, Tang CX, He XW, Yin XB (2013) Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)3 2+ intercalation and lead recognition. Analyst 138:263–268

    Article  CAS  Google Scholar 

  6. Ding CF, Zheng Q, Wang NN, Yue QF (2012) An electrochemiluminescence strategy based on aptamers and nanoparticles for the detection of cancer cells. Anal Chim Acta 756:73–78

    Article  CAS  Google Scholar 

  7. Yao W, Wang L, Wang HY, Zhang XL (2009) Electrochemiluminescent sensor for the detection of DNA hybridization using stem-loop structure DNA as capture probes. Microchim Acta 165:407–413

    Article  CAS  Google Scholar 

  8. Yao W, Wang L, Wang HY, Zhang XL, Li L, Zhang N, Pan L, Xing NN (2013) An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching. Biosens Bioelectron 40:356–361

    Article  CAS  Google Scholar 

  9. Yin XB, Xin YY, Zhao Y (2009) Label-Free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)3 2+-double-strand DNA composite film electrode. Anal Chem 81:9299–9305

    Article  CAS  Google Scholar 

  10. Jie G, Yuan JX (2012) Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Anal Chem 84:2811–2817

    Article  CAS  Google Scholar 

  11. Miao WJ (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553

    Article  CAS  Google Scholar 

  12. Zhan W, Bard AJ (2007) Electrogenerated chemiluminescence. 83. immunoassay of human C-Reactive protein by using Ru(bpy)3 2+-encapsulated liposomes as labels. Anal Chem 79:459–463

    Article  CAS  Google Scholar 

  13. Wang H, Zhang CX, Li Y, Qi HL (2006) Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes. Anal Chim Acta 575:205–211

    Article  CAS  Google Scholar 

  14. Chai Y, Tian DY, Wang W, Cui H (2010) A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system. Chem Commun 46:7560–7562

    Article  CAS  Google Scholar 

  15. Li Y, Qi HL, Fang F, Zhang CX (2007) Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2″-bipyridyl) ruthenium derivative tags. Talanta 72:1704–1709

    Article  CAS  Google Scholar 

  16. Naimish PS, John CB, James FR (2011) Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem 83:6698–6703

    Article  Google Scholar 

  17. Chu HH, Yan JL, Tu YF (2011) Electrochemiluminescent detection of the hybridization of oligonucleotides using an electrode modified with nanocomposite of carbon nanotubes and gold nanoparticles. Microchim Acta 175:209–216

    Article  CAS  Google Scholar 

  18. Wei H, Liu JF, Zhou LL, Li J, Jiang X, Kang JZ, Yang XR, Dong SJ, Wang EK (2008) [Ru(bpy)3]2+-doped silica nanoparticles within layer-by-layer biomolecular coatings and their application as a biocompatible electrochemiluminescent tag material. Chem Eur J 14:3687–3693

    Article  CAS  Google Scholar 

  19. Sun QX, Zou GZ, Zhang XL (2011) Electrochemiluminescence DNA sensor based on hairpin structure DNA as recognition element and Ru(bpy)3 2+-doped silica nanoparticles as signal-producing compound. Electroanalysis 23:2693–2698

    Article  CAS  Google Scholar 

  20. Seeman NCJ (1982) Nucleic acid junctions and lattices. Theor Biol 99:237–247

    Article  CAS  Google Scholar 

  21. Seeman NCJ (2010) Nanomaterials Based on DNA. Annu Rev Biochem 79:65–87

    Article  CAS  Google Scholar 

  22. Teller C, Willner I (2010) Organizing protein-DNA hybrids as nanostructures with programmed functionalities. Trends Biotechnol 28:619–628

    Article  CAS  Google Scholar 

  23. Pinheiro AV, Han DR, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    Article  CAS  Google Scholar 

  24. Pei H, Lu N, Wen YL, Song SP, Liu Y, Yan H, Fan CH (2010) A DNA Nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater 22:4754–4758

    Article  CAS  Google Scholar 

  25. Chen X, Lin YH, Li J, Lin LS, Chen GN, Yang HH (2011) A simple and ultrasensitive electrochemical DNA biosensor based on DNA concatamers. Chem Commun 47:12116–12118

    Article  CAS  Google Scholar 

  26. Shimron S, Wang FA, Orbach R, Willner I (2012) Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Anal Chem 84:1042–1048

    Article  CAS  Google Scholar 

  27. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  CAS  Google Scholar 

  28. Corcoran C, Friel AM, Duffy MJ, Crown J, O’Driscoll L (2011) Intracellular and Extracellular MicroRNAs in breast cancer. Clin Chem 57:18–32

    Article  CAS  Google Scholar 

  29. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CSR, Harris AL (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–67530

    Article  Google Scholar 

  30. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE (2009) The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 112:55–59

    Article  CAS  Google Scholar 

  31. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JTR, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984

    Article  CAS  Google Scholar 

  32. Zhang SS, Xia JP, Li XM (2008) Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal Chem 80:8382–8388

    Article  CAS  Google Scholar 

  33. Chen X, Hong CY, Lin YH, Chen JH, Chen GN, Yang HH (2012) Enzyme-free and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures. Anal Chem 84:8277–8283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Basic Research Program of China (No. 2010CB732403), the National Natural Science Foundation of China (No. 21125524, No. 21105012), the Program For New Century Excellent Talents in University of China (09-0014) and the National Science Foundation of Fujian Province (2010 J06003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Ping Xu or Huang-Hao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Chen, X., Hong, CY. et al. Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures. Microchim Acta 181, 731–736 (2014). https://doi.org/10.1007/s00604-013-1113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1113-5

Keywords

Navigation