Skip to main content
Log in

Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the use of individual zinc oxide (ZnO) micro/nanowires in an electrochemical biosensor for uric acid. The wires were synthesized by chemical vapor deposition and possess uniform morphology and high crystallinity as revealed by scanning electron microscopy, X-ray diffraction, and photoluminescence studies. The enzyme uricase was then immobilized on the surface of the ZnO micro/nanowires by physical adsorption, and this was proven by Raman spectroscopy and fluorescence microscopy. The resulting uric acid biosensor undergoes fast electron transfer between the active site of the enzyme and the surface of the electrode. It displays high sensitivity (89.74 μA cm−2 mM−1) and a wide linear analytical range (between 0.1 mM and 0.59 mM concentrations of uric acid). This study also demonstrates the potential of the use of individual ZnO micro/nanowires for the construction of highly sensitive nano-sized biosensors.

Individual ZnO micro/nanowire based electrochemical biosensor was constructed. The biosensor displayed a higher sensitivity of 89.74 μA cm−2 mM−1 for uric acid detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brooks SL, Ashy RE, Turner APF, Calder MR, Clarke DJ (1987) Development of an on-line glucose sensor for fermentation monitoring. Biosensor 3:45–56

    Article  CAS  Google Scholar 

  2. Palchetti I, Cagninia A, Carlo MD, Coppi C, Mascini M, Turner APF (1997) Determination of anticholinesterase pesticides in real samples using a disposable biosensor. Anal Chim Acta 337:315–321

    Article  CAS  Google Scholar 

  3. Nakaminami T, Ito S, Kuwabata S, Yoneyama H (1999) A biomimetic phospholipid/alkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid. Anal Chem 71:4278–4283

    Article  CAS  Google Scholar 

  4. Hoshi T, Saiki H, Anzai J (2003) Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta 61:363–368

    Article  CAS  Google Scholar 

  5. Zhang FF, Li CX, Li XH, Wang XL, Wan Q, Xian YZ, Jin LT, Yamamoto K (2006) ZnS quantum dots derived a reagentless uric acid biosensor. Talanta 68:1353–1358

    Article  CAS  Google Scholar 

  6. Behera S, Raj CR (2007) Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid. Biosens Bioelectron 23:556–561

    Article  CAS  Google Scholar 

  7. Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem 80:9848–9851

    Article  CAS  Google Scholar 

  8. Korkut S, Keskinler B, Erhan E (2008) An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta 76:1147–1152

    Article  CAS  Google Scholar 

  9. Kanyong P, Pemberton RM, Jackson SK, Hart JP (2012) Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis. Anal Biochem 428:39–43

    Article  CAS  Google Scholar 

  10. Gao XPA, Zheng GF, Lieber CM (2010) Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett 10:547–552

    Article  CAS  Google Scholar 

  11. Wang WU, Chen C, Lin KH, Fang Y, Lieber CM (2005) Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. PNAS 102:3208–3212

    Article  CAS  Google Scholar 

  12. Wang XH, Chen Y, Gibney KA et al (2008) Silicon-based nanochannel glucose sensor. Appl Phys Lett 92:013903

    Article  Google Scholar 

  13. Lapierre-Devlin MA, Asher CL, Taft BJ et al (2005) Amplified electrocatalysis at DNA-modified nanowires. Nano Lett 5:1051–1055

    Article  CAS  Google Scholar 

  14. Abe M, Murata K, Kojima A et al (2007) Quantitative detection of protein using a top-gate carbon nanotube field effect transistor. J Phys Chem C 111:8667–8670

    Article  CAS  Google Scholar 

  15. Vamvakaki V, Tsagaraki K, Chaniotakis N (2006) Carbon nanofiber-based glucose biosensor. Anal Chem 78:5538–5542

    Article  CAS  Google Scholar 

  16. Wang GF, Wei Y, Zhang W et al (2009) Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Microchim Acta 168:87–92

    Google Scholar 

  17. Zhang P, Zhang L, Zhao GC et al (2011) A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. Microchim Acta 176:411–417

    Google Scholar 

  18. Zhou XT, Hu JQ, Li CP et al (2003) Silicon nanowires as chemical sensors. Chem Phys Lett 369:220–224

    Article  CAS  Google Scholar 

  19. Fujisawa K, Komiyama K, Kim YA et al (2011) Chirality-dependent transport in double-walled carbon nanotube assemblies: the role of inner tubes. ACS Nano 5:7547–7554

    Article  CAS  Google Scholar 

  20. Gayathri V, Geetha R (2006) Carbon nanotube as NEMS sensor — effect of chirality and stone-wales defect intend. J Phys Conf Ser 34:824–828

    Article  CAS  Google Scholar 

  21. Patlsky F, Timko BP, Lieber CM et al (2006) Detection, stimulation and inhibition of neuronal signals with high-density nanowires transistor arrays. Science 313:1100–1104

    Article  Google Scholar 

  22. Hernández-Vélez M (2006) Nanowires and 1D arrays fabrication: an overview. Thin Solid Films 495:51–63

    Article  Google Scholar 

  23. Wang JX, Sun XW, Wei A et al (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88:233106

    Article  Google Scholar 

  24. Kang BS, Wang HT, Ren F et al (2007) Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Appl Phys Lett 91:252103

    Article  Google Scholar 

  25. Kong T, Chen Y, Ye YP et al (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sensors Actuators B 138:344–350

    Article  CAS  Google Scholar 

  26. Yang Y, Zhang Y, Yan XQ et al (2009) Fabrication, structural characterization, and photoluminescence of Ga-doped ZnO nanobelts. Appl Phys A 94:799–803

    Article  CAS  Google Scholar 

  27. Choi A, Kim K, Hyo-Il J, Lee SY (2010) ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sensors Actuators B 148:577–582

    Article  CAS  Google Scholar 

  28. Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407–409

    Article  CAS  Google Scholar 

  29. Zhao J, Yan XQ, Zhang Y et al (2010) Raman spectra and photoluminescence properties of In-doped ZnO nanostructures. Mater Lett 64:569–572

    Article  CAS  Google Scholar 

  30. Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574

    Article  CAS  Google Scholar 

  31. Lei Y, Luo N, Yan XQ, Zhao YG, Zhang G, Zhang Y (2012) A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection. Nanoscale 4:3438–3443

    Article  CAS  Google Scholar 

  32. Kan JQ, Pan XH, Chen C (2004) Polyaniline–uricase biosensor prepared with template process. Biosens Bioelectron 19:1635–1640

    Article  CAS  Google Scholar 

  33. Tsai YC, Huang JD (2006) Poly(vinyl alcohol)-assisted dispersion of multiwalled carbon nanotubes in aqueous solution for electroanalysis. Electrochem Commun 8:956–960

    Article  CAS  Google Scholar 

  34. Lei Y, Yan XQ, Zhang Y et al (2010) ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange. Colloids Surf A 361:169–173

    Article  CAS  Google Scholar 

  35. Azamian BR, Davis JJ, Coleman KS et al (2002) Bioelectrochemical single-walled carbon nanotubes. J Am Chem Soc 124:12664–12665

    Article  CAS  Google Scholar 

  36. Lv Y, Zhang ZJ, Chen FN (2002) Chemiluminescence biosensor chip based on a microreactor using carrier air flow for determination of uric acid in human serum. Analyst 127:1176–1179

    Article  Google Scholar 

  37. Tsai HC, Doong RA (2004) Simultaneous determination of renal clinical analytes in serum using hydrolase- and oxidase-encapsulated optical array biosensors. Anal Biochem 334:183–192

    Article  CAS  Google Scholar 

  38. Zhang FF, Wang XL, Ai SY et al (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519:155–160

    Article  CAS  Google Scholar 

  39. Zhang Y, Wen GM, Zhou YH et al (2007) Development and analytical application of a uric acid biosensor using an uricase-immobilized eggshell membrane. Biosens Bioelectron 22:1791–1797

    Article  CAS  Google Scholar 

  40. Ndamanisha JC, Guo LP (2008) Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode. Biosens Bioelectron 23:1680–1685

    Article  CAS  Google Scholar 

  41. Schrenkhammer P, Wolfbeis OS (2008) Fully reversible optical biosensors for uric acid using oxygen transduction. Biosens Bioelectron 24:994–999

    Article  CAS  Google Scholar 

  42. Chen JC, Chung HH, Hsu CT, Tsai DM, Kumar AS, Zen JM (2005) A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood. Sensors Actuators B 110:364–369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Major Research Program of China (2013CB932600), the Program of International S&T Cooperation (2012DFA50990), NSFC (51232001, 51172022, 50972011), the Research Fund of Co-construction Program from Beijing Municipal Commission of Education, the Fundamental Research Funds for the Central Universities, Program for Changjiang Scholars and Innovative Research Team in University, and the Beijing novel program (2008B19) and the Program for New Century Excellent Talents (NCET-09-0219).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Yan or Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Yan, X., Kang, Z. et al. Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Microchim Acta 180, 759–766 (2013). https://doi.org/10.1007/s00604-013-0981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0981-z

Keywords

Navigation