Skip to main content
Log in

A gold electrode modified with hemoglobin and the chitosan@Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel electrochemical biosensor that was fabricated by immobilizing hemoglobin (Hb) onto the surface of a gold electrode modified with a chitosan@Fe3O4 nano-composite. The Fe3O4 nanoparticles were prepared by co-precipitation and have an average size of 25 nm. They were dispersed in chitosan solution to obtain the chitosan@Fe3O4 nano-composite particles with an average diameter of 35 nm as verified by transmission electron microscopy. X-ray diffraction patterns and Fourier transform IR spectroscopy confirmed that the crystallite structure of the Fe3O4 particles in the nano-composite has remained unchanged. At pH 7.0, Hb gives a pair of redox peaks with a potential of about −0.21 V and −0.36 V. The Hb on the film maintained its biological activity and displays good electrocatalytic reduction activity towards hydrogen peroxide. The linear range for the determination of H2O2 is from 2.3 μM to 9.6 mM, with a detection limit at 1.1 μM concentration (at S/N = 3). The apparent Michaelis-Menten constant is 3.7 mM and indicates the high affinity of Hb for H2O2. This biosensor also exhibits good reproducibility and long-term stability. Thus, it is expected to possess potential applications in the development of the third-generation electrochemical biosensors.

The chitosan@Fe3O4 nano-composite particles was prepaired and characterized. It was immobilized onto the surface of a gold electrode to form hemoglobin modified biosensor. This biosensor displays good electrocatalytic reduction activity towards hydrogen peroxide. It also exhibits good reproducibility and long-term stability. It is expected to detect BOD and COD in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu CM, Ji W, Gou L, Bao N, Gu HY (2011) The pH-sensitive switchable behavior based on the layer-by-layer films of hemoglobin and Ag nanoparticles. Electrochem Commun 13:1502–1505

    Article  CAS  Google Scholar 

  2. Shahrokhian S, Jokar E, Ghalkhani M (2010) Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan. Microchim Acta 170:141–146

    Article  CAS  Google Scholar 

  3. Sanghavi BJ, Srivastava AK (2011) Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode. Electrochim Acta 56:4188–4196

    Article  CAS  Google Scholar 

  4. Sanghavi BJ, Mobin SM, Mathur P, Lahiri GK, Srivastava AK (2013) Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens Bioelectron 39:124–132

    Article  CAS  Google Scholar 

  5. Zhao C, E Y, Fan L (2012) Enhanced electrochemical evolution of oxygen by using nanoflowers made from a gold and iridium oxide composite. Microchim Acta 178:107–114

    Article  CAS  Google Scholar 

  6. Zhang Z, Zhu H, Wang X, Yang X (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Microchim Acta 174:183–189

    Article  CAS  Google Scholar 

  7. Nagarale RK, Lee JM, Shin W (2009) Electrochemical properties of ferrocene modified polysiloxane/chitosan nanocomposite and its application to glucose sensor. Electrochim Acta 54:6508–6514

    Article  CAS  Google Scholar 

  8. Xu HF, Dai H, Chen GN (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81:334–338

    Article  CAS  Google Scholar 

  9. Suresh S, Gupta M, Kumar GA, Rao VK, Kumar O, Ghosal P (2012) Synergic effect of multi-walled carbon nanotubes and gold nanoparticles towards immunosensing of ricin with carbon nanotube-gold nanoparticles-chitosan modified screen printed electrode. Analyst 137:4086–4092

    Article  CAS  Google Scholar 

  10. Yu C, Zhou X, Gu H (2010) Immobilization, direct electrochemistry and electrocatalysis of hemoglobin on colloidal silver nanoparticles-chitosan film. Electrochim Acta 55:8738–8743

    Article  CAS  Google Scholar 

  11. Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 23:1781–1787

    Article  CAS  Google Scholar 

  12. Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B-Enzym 61:208–215

    Article  CAS  Google Scholar 

  13. Tran LD, Nguyen BH, Hieu NV, Tran HV, Nguyen HL, Nguyen PX (2011) Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Mater Sci Eng, C 31:477–485

    Article  CAS  Google Scholar 

  14. Güzel R, Ustündağ Z, Ekşi H, Keskin S, Taner B, Durgun ZG, Turan AA, Solak AO (2010) Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules. J Colloid Interface Sci 351:35–42

    Article  Google Scholar 

  15. Sianette K (1986) A novel mediator for the investigation of the electrochemistry of metalloproteins. Bioelectrochem Bioenerg 16:99–109

    Article  Google Scholar 

  16. Rezaei B, Rahmanian O, Ensafi AA (2012) Sensing Lorazepam with a glassy carbon electrode coated with an electropolymerized-imprinted polymer modified with multiwalled carbon nanotubes and gold nanoparticles. Microchim Acta 180:33–39

    Article  Google Scholar 

  17. Kim SK, Jeong YN, Ahmed MS, You J, Choi HC, Jeon S (2011) Electrocatalytic determination of hydrazine by a glassy carbon electrode modified with PEDOP/MWCNTs-Pd nanoparticles. Sens Actuators B 153:246–251

    Article  CAS  Google Scholar 

  18. Lian WJ, Liu S, Yu JH, Xing XR, Li J, Cui M, Huang JD (2012) Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron 38:163–169

    Article  CAS  Google Scholar 

  19. Gao Q, Guo Y, Zhang W, Qi H, Zhang C (2011) An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer on a screen-printed carbon electrode. Sens Actuators B 153:219–225

    Article  CAS  Google Scholar 

  20. Gu H, Yu A, Chen H (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid cysteamine-modified gold electrode. J Electroanal Chem 516:119–126

    Article  CAS  Google Scholar 

  21. Nie D, Liang Y, Zhou T, Li X, Shi G, Jin L (2010) Electrochemistry and electrocatalytic of hemoglobin immobilized on FDU-15-Pt mesoporous materials. Bioelectrochemistry 79:248–253

    Article  CAS  Google Scholar 

  22. Zheng J, Zhao J, Gong C (2012) Preparation of the ordered mesoporous carbon/Fe3O4 and its application for the direct electrochemistry of hemoglobin. Acta Chim Sin 70:617–623

    Article  CAS  Google Scholar 

  23. Yu C, Guo J, Gu H (2009) Direct electrochemical behavior of hemoglobin at surface of Au@Fe3O4 magnetic nanoparticles. Microchim Acta 166:215–220

    Article  CAS  Google Scholar 

  24. Laviron E (1979) The use of linear potential sweep voltammetry and of A. C. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263–270

    Article  CAS  Google Scholar 

  25. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electronal Chem 101:19–28

    Article  CAS  Google Scholar 

  26. Xiong H, Zhao Y, Liu P, Zhang X, Wang S (2010) Electrochemical properties and the determination of nicotine at a multi-walled carbon nanotubes modified glassy carbon electrode. Microchim Acta 168:31–36

    Article  CAS  Google Scholar 

  27. Lai G, Zhang H, Han D (2009) Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase by carbon-coated iron nanoparticles in combination with chitosan and cross-linking of glutaraldehyde. Microchim Acta 165:159–165

    Article  CAS  Google Scholar 

  28. Chen J, Li B, Zheng J, Zhao J, Jing H, Zhu Z (2011) Polyaniline nanofiber/carbon film as flexible counter electrodes in platinum-free dye-sensitized solar cells. Electrochim Acta 56:4624–4630

    Article  CAS  Google Scholar 

  29. Jolly DC, Murray DL (1984) Spatially periodic instability occurring in moving boundary electrophoresis experiments. J Electroanal Chem 160:103–116

    Article  CAS  Google Scholar 

  30. Masek A, Zaborski M, Chrzescijanska E (2011) Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry. Food Chem 127:699–704

    Article  CAS  Google Scholar 

  31. Lai G, Zhang H, Han D (2008) A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sens Actuators B: Chem 129:497–503

    Article  CAS  Google Scholar 

  32. Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirkhalaf F, Mirjalili BF (2011) A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan. Biosens Bioelectron 26:2102–2106

    Article  CAS  Google Scholar 

  33. Liu Y, Han T, Chen C, Bao N, Yu CM, Gu HY (2011) A novel platform of hemoglobin on core–shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry. Electrochim Acta 56:3238–3247

    Article  CAS  Google Scholar 

  34. Younathan JN, Wood KS, Meyer TJ (1992) Electrocatalytic reduction of nitrite and nitrosyl by iron (III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film. Inorg Chem 31:3280–3285

    Article  CAS  Google Scholar 

  35. Xu Y, Hu C, Hu S (2008) Direct electron-transfer of native hemoglobin in blood: kinetics and catalysis. Bioelectrochemistry 72:135–140

    Article  CAS  Google Scholar 

  36. Wang JX, Marinković NS, Adžić RR (1998) Structure of Br adlayers in the course of electrocatalytic reactions O2 reduction on Pt(111) and Au(100). Colloids Surf A 134:165–171

    Article  CAS  Google Scholar 

  37. Sun W, Wang D, Zhong J, Jiao K (2008) Electrocatalytic activity of hemoglobin in sodium alginate/SiO2 nanoparticle/ionic liquid BMIMPF6 composite film. J Solid State Electrochem 12:655–661

    Article  CAS  Google Scholar 

  38. Yang R, Gao G, Liu T, Liu S, Li G (2007) Enhanced ability of hemoglobin to carry oxygen by salidroside. Electrochem Commun 9:94–96

    Article  CAS  Google Scholar 

  39. Odabaş Z, Altındal A, Özkaya AR, Salih B, Bekaroğlu Ö (2010) Novel ball-type homo- and hetero-dinuclear phthalocyanines with four 1,1′-methylenedinaphthalen-2-ol bridges: synthesis and characterization, electrical and gas sensing properties and electrocatalytic performance towards oxygen reduction. Sens Actuators B: Chem 145:355–366

    Article  Google Scholar 

  40. Haghighi B, Hamidi H, Gorton L (2010) Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sens Actuators B: Chem 147:270–276

    Article  CAS  Google Scholar 

  41. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198

    Article  CAS  Google Scholar 

  42. Chen C, Liu Y, Gu HY (2010) Cellular biosensor based on red blood cells immobilized on Fe3O4 Core/Au Shell nanoparticles for hydrogen peroxide electroanalysis. Microchim Acta 171:371–376

    Article  CAS  Google Scholar 

  43. Fan H, Pan ZQ, Gu HY (2010) The self-assembly, characterization and application of hemoglobin immobilized on Fe3O4@Pt core-shell nanoparticles. Microchim Acta 168:239–244

    Article  CAS  Google Scholar 

  44. Zhang K, Zhang L, Xu J, Wang C, Geng T, Wang H, Zhu J (2010) A sensitive amperometric hydrogen peroxide sensor based on thionin/EDTA/carbon nanotubes-chitosan composite film modified electrode. Microchim Acta 171:139–144

    Article  Google Scholar 

  45. Gu HY, Xu Y, Peng W, Li G, Chen H-Y (2004) A novel method for separating the anodic voltammetric peaks of dopamine and ascorbic acid. Microchim Acta 146:223–227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant numbers: 20875051; 81001263), the Natural Science Foundation of Jiangsu Province (Grant number: BK2011047), the Universities Natural Science Foundation of Jiangsu Province (Grant number: 10KJB150015), the Application Research Item of Nantong City (Grant number: BK2011020),the Social Development Item of Nantong City (Grant number: HS2012017) and the project founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant number: 12KJD150010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ying Gu.

Additional information

Yuan-Hong Wang and Chun-Mei Yu, co-first author. Paper was written by Yuan-Hong Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Yu, CM., Pan, ZQ. et al. A gold electrode modified with hemoglobin and the chitosan@Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide. Microchim Acta 180, 659–667 (2013). https://doi.org/10.1007/s00604-013-0977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0977-8

Keywords

Navigation