Skip to main content
Log in

Comparative outcomes between collared versus collarless and short versus long stem of direct anterior approach total hip arthroplasty: a systematic review and indirect meta-analysis

  • Original Article • HIP - ARTHROPLASTY
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Introduction

Early research shows several advantages of the direct anterior approach (DAA) in THA that claimed to be as effective but less invasive than the posterior approach. However, due to the difficult femoral exposure and possible complications related to femoral preparation, this approach may result in a higher rate of undersized stems when compared to other approaches. The present authors believe that the femoral implant design (collar or collarless stem, short or long stem) in a collared femoral stem may relate to lower rates of stem subsidence and limb length discrepancy (LLD) in mid-term to long-term follow-up when compared to collarless femoral stems. However, currently, there is no consensus as to which femoral implant design is the most suitable for DAA in THA.

Methods

This systematic review and meta-analysis aim to assess and compare postoperative complications (neurapraxia, wound infection, LFCN, hematoma, artery injury, cup malposition, embolism, fracture and implant loosening) and revision rates due to dislocation, periprosthetic fracture and implant migration after DAA using collared compared to collarless femoral stem and short femoral stem compared to long femoral stem in THA. These clinical outcomes consist of the postoperative complications and revision femoral stem due to neurapraxia, wound, LFCN and LLD. This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

Results

Relevant studies that reported postoperative complications and revision of either implant were identified from Medline and Scopus from inception to June 6, 2018. Thirty-four studies were included for the analysis of DAA in THA; 23 studies were retrospective cohorts, four studies were prospective cohorts, and seven studies were RCTs. Thirty-one studies and three studies were included for analysis of collarless and collared femoral stems. Twenty-six studies were long femoral stems and eight studies were short femoral stems. Overall, there were 6825 patients (6457 in the collarless group and 368 in the collared group, 4280 in long stem and 2545 in short stem). A total of 469 and 66 patients had complications and revisions in the collarless group, and no patient had complications and revisions in the collared stem group. The total complication and revision rate per patient were 5% (95%CI 3.3%, 7%) and 0.9% (95%CI 0.6%, 1.2%) in all patients. The complication rate and revision rate were 5.7% (95%CI 3.8%, 7.7%) and 0.9% (95%CI 0.6, 1.2) in the collarless group. There was no prevalence of complications and revisions in the collared stem group. The complication rate and revision rate were 10.2% (95%CI 9%, 11.4%), 0.7% (95%CI 0.3%, 1%) and 5.2% (95%CI 3.1, 7.2), 1.5% (95%CI 1%, 2%) in short and long femoral stems, respectively. Indirect meta-analysis shows that collared femoral stem provided a lower risk of complications of 0.02 (95%CI 0.001, 0.30) when compared to collarless femoral stem. Long femoral stems had a lower risk of having complications of 0.57 (95%CI 0.48, 0.68) when compared to short femoral stems. In terms of revision, there is no statistically significant difference in collared femoral stem compared to collarless femoral stem and long femoral stem compared to short femoral stem.

Conclusion

In DAA THA, collared femoral stem and long femoral stem had decreased complication rates when compared to collarless femoral stem and short femoral stem by both direct and indirect meta-analysis methods. However, in terms of revision rates, there were no differences between all femoral stems (short versus long and collared versus collarless). Prospective randomized controlled studies are needed to confirm these findings as the current literature is still insufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

THA:

Total hip arthroplasty

DAA:

Direct Anterior Approach

PA:

Posterior approach

LLD:

Limb length discrepancy

RCT:

Randomized controlled trial

SD:

Standard deviation

BMI:

Body mass index

LFCN:

Lateral Femoral Cutaneous Nerve

OR:

Odds ratio

OA:

Osteoarthritis

References

  1. Baker AS, Bitounis VC (1989) Abductor function after total hip replacement. An electromyographic and clinical review. J Bone Jt Surg Br 71(1):47–50

    Article  CAS  Google Scholar 

  2. Barrett WP, Turner SE, Leopold JP (2013) Prospective randomized study of direct anterior vs postero-lateral approach for total hip arthroplasty. J Arthroplasty 28(9):1634–1638. https://doi.org/10.1016/j.arth.2013.01.034

    Article  PubMed  Google Scholar 

  3. Bernard J, Razanabola F, Beldame J, Van Driessche S, Brunel H, Poirier T, Matsoukis J, Billuart F (2018) Electromyographic study of hip muscles involved in total hip arthroplasty: surprising results using the direct anterior minimally invasive approach. Orthop Traumat Surg Res OTSR. https://doi.org/10.1016/j.otsr.2018.03.013

    Article  Google Scholar 

  4. Bingham JS, Spangehl MJ, Hines JT, Taunton MJ, Schwartz AJ (2018) Does intraoperative fluoroscopy improve limb-length discrepancy and acetabular component positioning during direct anterior total hip arthroplasty? J Arthroplasty. https://doi.org/10.1016/j.arth.2018.05.004

    Article  PubMed  Google Scholar 

  5. Brown ML, Plate JF, Holst DC, Bracey DN, Bullock MW, Lang JE (2017) A retrospective analysis of the merits and challenges associated with simultaneous bilateral THA using the direct anterior approach. Hip Int J Clin Exp Res Hip Pathol Therapy 27(2):169–174. https://doi.org/10.5301/hipint.5000449

    Article  Google Scholar 

  6. Chen M, Luo Z, Ji X, Cheng P, Tang G, Shang X (2017) Direct anterior approach for total hip arthroplasty in the lateral decubitus position: our experiences and early results. J Arthroplasty 32(1):131–138. https://doi.org/10.1016/j.arth.2016.05.066

    Article  PubMed  Google Scholar 

  7. Cheng TE, Wallis JA, Taylor NF, Holden CT, Marks P, Smith CL, Armstrong MS, Singh PJ (2016) A prospective randomized clinical trial in total hip arthroplasty-comparing early results between the direct anterior approach and the posterior approach. J Arthroplasty. https://doi.org/10.1016/j.arth.2016.08.027

    Article  PubMed  Google Scholar 

  8. Christensen CP, Jacobs CA (2015) Comparison of patient function during the first six weeks after direct anterior or posterior total hip arthroplasty (THA): a randomized study. J Arthroplasty 30(9 Suppl):94–97. https://doi.org/10.1016/j.arth.2014.12.038

    Article  PubMed  Google Scholar 

  9. Cidambi KR, Barnett SL, Mallette PR, Patel JJ, Nassif NA, Gorab RS (2018) Impact of femoral stem design on failure after anterior approach total hip arthroplasty. J Arthroplasty 33(3):800–804. https://doi.org/10.1016/j.arth.2017.10.023

    Article  PubMed  Google Scholar 

  10. Cohen EM, Vaughn JJ, Ritterman SA, Eisenson DL, Rubin LE (2017) Intraoperative femur fracture risk during primary direct anterior approach cementless total hip arthroplasty with and without a fracture table. J Arthroplasty 32(9):2847–2851. https://doi.org/10.1016/j.arth.2017.04.020

    Article  PubMed  Google Scholar 

  11. De Geest T, Vansintjan P, De Loore G (2013) Direct anterior total hip arthroplasty: complications and early outcome in a series of 300 cases. Acta Orthop Belg 79(2):166–173

    PubMed  Google Scholar 

  12. Demey G, Fary C, Lustig S, Neyret P, si Selmi T (2011) Does a collar improve the immediate stability of uncemented femoral hip stems in total hip arthroplasty? A bilateral comparative cadaver study. J Arthroplasty 26(8):1549–1555. https://doi.org/10.1016/j.arth.2011.03.030

    Article  PubMed  Google Scholar 

  13. Downing ND, Clark DI, Hutchinson JW, Colclough K, Howard PW (2001) Hip abductor strength following total hip arthroplasty: a prospective comparison of the posterior and lateral approach in 100 patients. Acta Orthop Scand 72(3):215–220. https://doi.org/10.1080/00016470152846501

    Article  CAS  PubMed  Google Scholar 

  14. Eto S, Hwang K, Huddleston JI, Amanatullah DF, Maloney WJ, Goodman SB (2017) the direct anterior approach is associated with early revision total hip arthroplasty. J Arthroplasty 32(3):1001–1005. https://doi.org/10.1016/j.arth.2016.09.012

    Article  PubMed  Google Scholar 

  15. Fahs AM, Koueiter DM, Kurdziel MD, Huynh KA, Perry CR, Verner JJ (2018) psoas compartment block vs periarticular local anesthetic infiltration for pain management after anterior total hip arthroplasty: a prospective, randomized study. J Arthroplasty. https://doi.org/10.1016/j.arth.2018.02.052

    Article  PubMed  Google Scholar 

  16. Fransen B, Hoozemans M, Vos S (2016) Direct anterior approach versus posterolateral approach in total hip arthroplasty: one surgeon, two approaches. Acta Orthop Belg 82(2):240–248

    CAS  PubMed  Google Scholar 

  17. Goebel S, Steinert AF, Schillinger J, Eulert J, Broscheit J, Rudert M, Noth U (2012) Reduced postoperative pain in total hip arthroplasty after minimal-invasive anterior approach. Int Orthop 36(3):491–498. https://doi.org/10.1007/s00264-011-1280-0

    Article  PubMed  Google Scholar 

  18. Goosen JH, Kollen BJ, Castelein RM, Kuipers BM, Verheyen CC (2011) Minimally invasive versus classic procedures in total hip arthroplasty: a double-blind randomized controlled trial. Clin Orthop Relat Res 469(1):200–208. https://doi.org/10.1007/s11999-010-1331-7

    Article  PubMed  Google Scholar 

  19. Guild GN 3rd, Runner RP, Castilleja GM, Smith MJ, Vu CL (2017) Efficacy of hybrid plasma scalpel in reducing blood loss and transfusions in direct anterior total hip arthroplasty. J Arthroplasty 32(2):458–462. https://doi.org/10.1016/j.arth.2016.07.038

    Article  PubMed  Google Scholar 

  20. Hallert O, Li Y, Brismar H, Lindgren U (2012) The direct anterior approach: initial experience of a minimally invasive technique for total hip arthroplasty. J Orthop Surg Res 7:17. https://doi.org/10.1186/1749-799x-7-17

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hamilton WG, Parks NL, Huynh C (2015) Comparison of cup alignment, jump distance, and complications in consecutive series of anterior approach and posterior approach total hip arthroplasty. J Arthroplasty 30(11):1959–1962. https://doi.org/10.1016/j.arth.2015.05.022

    Article  PubMed  Google Scholar 

  22. Hartford JM, Bellino MJ (2017) The learning curve for the direct anterior approach for total hip arthroplasty: a single surgeon’s first 500 cases. Eur J Orthop Surg Traumatol Orthop Traumatol 27(5):483–488. https://doi.org/10.5301/hipint.5000488

    Article  Google Scholar 

  23. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  24. Hoell S, Sander M, Gosheger G, Ahrens H, Dieckmann R, Hauschild G (2014) The minimal invasive direct anterior approach in combination with large heads in total hip arthroplasty—is dislocation still a major issue? a case control study. BMC Musculoskelet Disord 15:80. https://doi.org/10.1186/1471-2474-15-80

    Article  PubMed  PubMed Central  Google Scholar 

  25. Homma Y, Baba T, Kobayashi H, Desroches A, Ozaki Y, Ochi H, Matsumoto M, Yuasa T, Kaneko K (2016) Safety in early experience with a direct anterior approach using fluoroscopic guidance with manual leg control for primary total hip arthroplasty: a consecutive one hundred and twenty case series. Int Orthop 40(12):2487–2494. https://doi.org/10.1007/s00264-016-3159-6

    Article  PubMed  Google Scholar 

  26. Ilchmann T, Gersbach S, Zwicky L, Clauss M (2013) Standard transgluteal versus minimal invasive anterior approach in hip arthroplasty: a prospective, consecutive cohort study. Orthop Rev 5(4):e31. https://doi.org/10.4081/or.2013.e31

    Article  Google Scholar 

  27. Ji HM, Kim KC, Lee YK, Ha YC, Koo KH (2012) Dislocation after total hip arthroplasty: a randomized clinical trial of a posterior approach and a modified lateral approach. J Arthroplasty 27(3):378–385. https://doi.org/10.1016/j.arth.2011.06.007

    Article  PubMed  Google Scholar 

  28. Kanda A, Kaneko K, Obayashi O, Mogami A, Morohashi I (2018) Preservation of the articular capsule and short lateral rotator in direct anterior approach to total hip arthroplasty. Eur J Orthop Surg Traumatol Orthop Traumatol. https://doi.org/10.1007/s00590-018-2166-2

    Article  Google Scholar 

  29. Kawarai Y, Iida S, Nakamura J, Shinada Y, Suzuki C, Ohtori S (2017) Does the surgical approach influence the implant alignment in total hip arthroplasty? Comparative study between the direct anterior and the anterolateral approaches in the supine position. Int Orthop 41(12):2487–2493. https://doi.org/10.1007/s00264-017-3521-3

    Article  PubMed  Google Scholar 

  30. Khemka A, Mograby O, Lord SJ, Doyle Z, Al Muderis M (2018) Total hip arthroplasty by the direct anterior approach using a neck-preserving stem: safety, efficacy and learning curve. Indian J Orthop 52(2):124–132. https://doi.org/10.4103/ortho.IJOrtho_314_16

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kleinert K, Werner C, Mamisch-Saupe N, Kalberer F, Dora C (2012) Closed suction drainage with or without re-transfusion of filtered shed blood does not offer advantages in primary non-cemented total hip replacement using a direct anterior approach. Arch Orthop Trauma Surg 132(1):131–136. https://doi.org/10.1007/s00402-011-1387-1

    Article  PubMed  Google Scholar 

  32. Meneghini RM, Elston AS, Chen AF, Kheir MM, Fehring TK, Springer BD (2017) Direct anterior approach: risk factor for early femoral failure of cementless total hip arthroplasty: a multicenter study. J Bone Jt Surg Am 99(2):99–105. https://doi.org/10.2106/jbjs.16.00060

    Article  Google Scholar 

  33. Mirza AJ, Lombardi AV Jr, Morris MJ, Berend KR (2014) A mini-anterior approach to the hip for total joint replacement: optimising results: improving hip joint replacement outcomes. Bone Jt J 96-b(11 Supple A):32–35. https://doi.org/10.1302/0301-620x.96b11.34348

    Article  CAS  Google Scholar 

  34. Nakamura J, Hagiwara S, Orita S, Akagi R, Suzuki T, Suzuki M, Takahashi K, Ohtori S (2017) Direct anterior approach for total hip arthroplasty with a novel mobile traction table—a prospective cohort study. BMC Musculoskelet Disord 18(1):49. https://doi.org/10.1186/s12891-017-1427-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nakata K, Nishikawa M, Yamamoto K, Hirota S, Yoshikawa H (2009) A clinical comparative study of the direct anterior with mini-posterior approach: two consecutive series. J Arthroplasty 24(5):698–704. https://doi.org/10.1016/j.arth.2008.04.012

    Article  PubMed  Google Scholar 

  36. Oinuma K, Eingartner C, Saito Y, Shiratsuchi H (2007) Total hip arthroplasty by a minimally invasive, direct anterior approach. Oper Orthop Traumatol 19(3):310–326. https://doi.org/10.1007/s00064-007-1209-3

    Article  PubMed  Google Scholar 

  37. Panichkul P, Parks NL, Ho H, Hopper RH Jr, Hamilton WG (2016) New approach and stem increased femoral revision rate in total hip arthroplasty. Orthopedics 39(1):e86–e92. https://doi.org/10.3928/01477447-20151222-06

    Article  PubMed  Google Scholar 

  38. Patton RS, Runner RP, Lyons RJ, Bradbury TL (2018) Clinical outcomes of patients with lateral femoral cutaneous nerve injury after direct anterior total hip arthroplasty. J Arthroplasty. https://doi.org/10.1016/j.arth.2018.04.032

    Article  PubMed  Google Scholar 

  39. Perry CR Jr, Fahs AM, Kurdziel MD, Koueiter DM, Fayne RJ, Verner JJ (2018) Intraoperative psoas compartment block vs preoperative fascia iliaca block for pain control after direct anterior total hip arthroplasty: a randomized controlled trial. J Arthroplasty 33(6):1770–1774. https://doi.org/10.1016/j.arth.2018.01.010

    Article  PubMed  Google Scholar 

  40. Pogliacomi F, De Filippo M, Paraskevopoulos A, Alesci M, Marenghi P, Ceccarelli F (2012) Mini-incision direct lateral approach versus anterior mini-invasive approach in total hip replacement: results 1 year after surgery. Acta Bio-medica Atenei Parmensis 83(2):114–121

    PubMed  Google Scholar 

  41. Ponzio DY, Poultsides LA, Salvatore A, Lee YY, Memtsoudis SG, Alexiades MM (2018) In-hospital morbidity and postoperative revisions after direct anterior vs posterior total hip arthroplasty. J Arthroplasty 33(5):1421–1425.e1421. https://doi.org/10.1016/j.arth.2017.11.053

    Article  PubMed  Google Scholar 

  42. Putananon C, Tuchinda H, Arirachakaran A, Wongsak S, Narinsorasak T, Kongtharvonskul J (2018) Comparison of direct anterior, lateral, posterior and posterior-2 approaches in total hip arthroplasty: network meta-analysis. 28(2):255–267. https://doi.org/10.1007/s00590-017-2046-1

  43. Reichert JC, Volkmann MR, Koppmair M, Rackwitz L, Ludemann M, Rudert M, Noth U (2015) Comparative retrospective study of the direct anterior and transgluteal approaches for primary total hip arthroplasty. Int Orthop 39(12):2309–2313. https://doi.org/10.1007/s00264-015-2732-8

    Article  PubMed  Google Scholar 

  44. Restrepo C, Parvizi J, Pour AE, Hozack WJ (2010) Prospective randomized study of two surgical approaches for total hip arthroplasty. J Arthroplasty 25(5):671–679.e671. https://doi.org/10.1016/j.arth.2010.02.002

    Article  PubMed  Google Scholar 

  45. Rivera F, Leonardi F, Evangelista A, Pierannunzii L (2016) Risk of stem undersizing with direct anterior approach for total hip arthroplasty. Hip Int J Clin Exp Res Hip Pathol Therapy 26(3):249–253. https://doi.org/10.5301/hipint.5000337

    Article  Google Scholar 

  46. Rodriguez JA, Deshmukh AJ, Rathod PA, Greiz ML, Deshmane PP, Hepinstall MS, Ranawat AS (2014) Does the direct anterior approach in THA offer faster rehabilitation and comparable safety to the posterior approach? Clin Orthop Relat Res 472(2):455–463. https://doi.org/10.1007/s11999-013-3231-0

    Article  PubMed  Google Scholar 

  47. Sariali E, Catonne Y, Pascal-Moussellard H (2017) Three-dimensional planning-guided total hip arthroplasty through a minimally invasive direct anterior approach. Clinical outcomes at five years’ follow-up. Int Orthop 41(4):699–705. https://doi.org/10.1007/s00264-016-3242-z

    Article  PubMed  Google Scholar 

  48. Sendtner E, Borowiak K, Schuster T, Woerner M, Grifka J, Renkawitz T (2011) Tackling the learning curve: comparison between the anterior, minimally invasive (Micro-hip(R)) and the lateral, transgluteal (Bauer) approach for primary total hip replacement. Arch Orthop Trauma Surg 131(5):597–602. https://doi.org/10.1007/s00402-010-1174-4

    Article  PubMed  Google Scholar 

  49. Shemesh SS, Robinson J, Keswani A, Bronson MJ, Moucha CS, Chen D (2017) The accuracy of digital templating for primary total hip arthroplasty: is there a difference between direct anterior and posterior approaches? J Arthroplasty 32(6):1884–1889. https://doi.org/10.1016/j.arth.2016.12.032

    Article  PubMed  Google Scholar 

  50. Sheth D, Cafri G, Inacio MC, Paxton EW, Namba RS (2015) Anterior and anterolateral approaches for THA are associated with lower dislocation risk without higher revision risk. Clin Orthop Relat Res 473(11):3401–3408. https://doi.org/10.1007/s11999-015-4230-0

    Article  PubMed  PubMed Central  Google Scholar 

  51. Simmonds MC, Higgins JP (2007) Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data. Stat Med 26(15):2982–2999. https://doi.org/10.1002/sim.2768

    Article  CAS  PubMed  Google Scholar 

  52. Tamaki T, Jonishi K, Miura Y, Oinuma K, Shiratsuchi H (2018) Cementless tapered-wedge stem length affects the risk of periprosthetic femoral fractures in direct anterior total hip arthroplasty. J Arthroplasty 33(3):805–809. https://doi.org/10.1016/j.arth.2017.09.065

    Article  PubMed  Google Scholar 

  53. Tamaki T, Oinuma K, Miura Y, Higashi H, Kaneyama R, Shiratsuchi H (2016) Epidemiology of dislocation following direct anterior total hip arthroplasty: a minimum 5-year follow-up study. J Arthroplasty 31(12):2886–2888. https://doi.org/10.1016/j.arth.2016.05.042

    Article  PubMed  Google Scholar 

  54. Taunton MJ, Mason JB, Odum SM, Springer BD (2014) Direct anterior total hip arthroplasty yields more rapid voluntary cessation of all walking aids: a prospective, randomized clinical trial. J Arthroplasty 29(9 Suppl):169–172. https://doi.org/10.1016/j.arth.2014.03.051

    Article  PubMed  Google Scholar 

  55. Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D, Thompson J, Hall I, Kaufman J, Leung TF, Helms PJ, Hakonarson H, Halpi E, Navon R, Attia J (2005) Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol 162(3):201–211. https://doi.org/10.1093/aje/kwi184

    Article  PubMed  Google Scholar 

  56. Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21(11):1559–1573. https://doi.org/10.1002/sim.1187

    Article  PubMed  Google Scholar 

  57. Tsahtsarlis A, Wood M (2012) Minimally invasive transforaminal lumber interbody fusion and degenerative lumbar spine disease. Eur Spine J 21(11):2300–2305. https://doi.org/10.1007/s00586-012-2376-y

    Article  PubMed  PubMed Central  Google Scholar 

  58. Varin D, Lamontagne M, Beaule PE (2013) Does the anterior approach for THA provide closer-to-normal lower-limb motion? J Arthroplasty 28(8):1401–1407. https://doi.org/10.1016/j.arth.2012.11.018

    Article  PubMed  Google Scholar 

  59. Watanabe K, Mitsui K, Usuda Y, Nemoto K (2019) An increase in the risk of excessive femoral anteversion for relatively younger age and types of femoral morphology in total hip arthroplasty with direct anterior approach. J Orthop Surg (Hong Kong) 27(2):2309499019836816. https://doi.org/10.1177/2309499019836816

    Article  Google Scholar 

  60. Wayne N, Stoewe R (2009) Primary total hip arthroplasty: a comparison of the lateral Hardinge approach to an anterior mini-invasive approach. Orthop Rev 1(2):e27. https://doi.org/10.4081/or.2009.e27

    Article  Google Scholar 

  61. Weale AE, Newman P, Ferguson IT, Bannister GC (1996) Nerve injury after posterior and direct lateral approaches for hip replacement. A clinical and electrophysiological study. J Bone Jt Surg Br 78(6):899–902

    Article  CAS  Google Scholar 

  62. William B (2014) Response to “a tale of two approaches”: prospective randomized study of direct anterior vs postero-lateral approach for total hip arthroplasty. J Arthroplasty 29(7):1507–1508. https://doi.org/10.1016/j.arth.2014.01.030

    Article  PubMed  Google Scholar 

  63. Witzleb WC, Stephan L, Krummenauer F, Neuke A, Gunther KP (2009) Short-term outcome after posterior versus lateral surgical approach for total hip arthroplasty—a randomized clinical trial. Eur J Med Res 14(6):256–263

    Article  Google Scholar 

  64. Yang C, Zhu Q, Han Y, Zhu J, Wang H, Cong R, Zhang D (2010) Minimally-invasive total hip arthroplasty will improve early postoperative outcomes: a prospective, randomized, controlled trial. Ir J Med Sci 179(2):285–290. https://doi.org/10.1007/s11845-009-0437-y

    Article  CAS  PubMed  Google Scholar 

  65. Zawadsky MW, Paulus MC, Murray PJ, Johansen MA (2014) Early outcome comparison between the direct anterior approach and the mini-incision posterior approach for primary total hip arthroplasty: 150 consecutive cases. J Arthroplasty 29(6):1256–1260. https://doi.org/10.1016/j.arth.2013.11.013

    Article  PubMed  Google Scholar 

  66. Zhao HY, Kang PD, Xia YY, Shi XJ, Nie Y, Pei FX (2017) Comparison of early functional recovery after total hip arthroplasty using a direct anterior or posterolateral approach: a randomized controlled trial. J Arthroplasty 32(11):3421–3428. https://doi.org/10.1016/j.arth.2017.05.056

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All authors declare no funding source or sponsor involvement in the study design, collection, analysis and interpretation of the data, in writing the manuscript, and in submission of the manuscript for publication.

Funding

This study has no funding support.

Author information

Authors and Affiliations

Authors

Contributions

PP was involved in conception and design, analysis and interpretation of the data, drafting of the article, critical revision of the article for important intellectual content, final approval of the article, collection and assembly of data. SB was involved in conception and design, drafting of the article, critical revision of the article for important intellectual content, final approval of the article. AA was involved in conception and design, drafting of the article, critical revision of the article for important intellectual content, final approval of the article, collection and assembly of data. JK was involved in conception and design, analysis and interpretation of the data, drafting of the article, critical revision of the article for important intellectual content, final approval of the article, collection and assembly of data.

Corresponding author

Correspondence to Jatupon Kongtharvonskul.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interests.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Appendix 1: Search term and search strategy

Appendix 1: Search term and search strategy

  • #1 DAA

  • #2 direct anterior approach

  • #3 total hip arthroplasty

  • #4#1 or #2

  • #5 #3 and #4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panichkul, P., Bavonratanavech, S., Arirachakaran, A. et al. Comparative outcomes between collared versus collarless and short versus long stem of direct anterior approach total hip arthroplasty: a systematic review and indirect meta-analysis. Eur J Orthop Surg Traumatol 29, 1693–1704 (2019). https://doi.org/10.1007/s00590-019-02516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-019-02516-1

Keywords

Navigation