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Abstract

Study design Investigation of the automation of radiolog-

ical features from magnetic resonance images (MRIs) of

the lumbar spine.

Objective To automate the process of grading lumbar

intervertebral discs and vertebral bodies from MRIs.

Summary of background data MR imaging is the most

common imaging technique used in investigating low back

pain (LBP). Various features of degradation, based on

MRIs, are commonly recorded and graded, e.g., Modic

change and Pfirrmann grading of intervertebral discs.

Consistent scoring and grading is important for developing

robust clinical systems and research. Automation facilitates

this consistency and reduces the time of radiological

analysis considerably and hence the expense.

Methods 12,018 intervertebral discs, from 2009 patients,

were graded by a radiologist and were then used to train:

(1) a system to detect and label vertebrae and discs in a

given scan, and (2) a convolutional neural network (CNN)

model that predicts several radiological gradings. The

performance of the model, in terms of class average

accuracy, was compared with the intra-observer class

average accuracy of the radiologist.

Results The detection system achieved 95.6% accuracy in

terms of disc detection and labeling. The model is able to

produce predictions of multiple pathological gradings that

consistently matched those of the radiologist. The model

identifies ‘Evidence Hotspots’ that are the voxels that most

contribute to the degradation scores.

Conclusions Automation of radiological grading is now on

par with human performance. The system can be beneficial

in aiding clinical diagnoses in terms of objectivity of

gradings and the speed of analysis. It can also draw the

attention of a radiologist to regions of degradation. This

objectivity and speed is an important stepping stone in the

investigation of the relationship between MRIs and clinical

diagnoses of back pain in large cohorts.

Level of Evidence: Level 3.

Keywords Automated grading � Pfirrmann grading �
Modic changes � Disc herniation � Disc bulge �
Spondylolisthesis � Disc classification � Disc detection �
Disc analysis � Vertebrae analysis � Deep learning

Introduction

Back pain is one of the most important causes of life-long

disability worldwide [1], resulting in enormous medical

and social costs. Although around 85% of cases have no
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clear diagnoses [2, 3], many studies indicate that degen-

eration of the intervertebral disc is involved [4, 5]. MRI

classifications of features of disc degeneration have

become a major diagnostic tool, even though many with

disc degeneration features are asymptomatic [6].

The uncertain association between radiological features

of disc degeneration and back pain may be due to the

definitions of the features themselves. Indeed, while

numerous studies have investigated possible causes of disc

degeneration, interpretation of the results is complicated by

lack of a standardized MRI disc degeneration phenotype

[7]. Improvements in the consistency, accuracy and

objectivity of measurement of radiological features would

improve understanding back pain in general. It would also

aid clinical reporting. To this end, a number of studies have

initiated work on automated systems for grading MRIs. To

date, only a system for generating Pfirrmann scores has

been developed [8], which requires human input.

Here we aim to automate the grading process of Spinal

MRIs for all radiological features scored routinely. A

simple pipeline of our approach can be seen in Fig. 1. This

automation of predicting or determining radiological scores

from the scans has three key benefits: (1) the results are

generated consistently; (2) radiologists can concentrate

their attention and expertise on alerts and potentially

problematic areas; (3) it would help researchers to measure

cohorts containing large amounts of lumbar MRI data.

Materials and methods

Dataset

This study is based on a cohort collected during the Gen-

odisc Project. The primary selection for recruitment to

Genodisc was ‘‘patients who seek secondary care for their

back pain or spinal problem’’. Genodisc sourced MRI scans

from centers in UK, Hungary, Slovenia and Italy. The

scans from the study were not standardized, came from

routine care in a number of different centers using different

machines, and resulted in scans which varied in acquisition

protocol. In this study, we excluded subjects whose MRI

scan was of poor quality or in a non-DICOM format and

used only the T2 sagittal scans. The scans were annotated

with various radiological scores (global, the whole spine,

and local, per disc) by a single expert experienced spinal

radiologist (IMcC).

In all, we obtained images of 12,018 individual discs,

six discs per patient, and their scores. Some scans con-

tained fewer than six discs but the majority showed the

complete lumbar region. To train and test the performance

of our system, patients were grouped into two different

sets, 90% in a training set of 1806 patients, and 10% in an

independent sample of 203 patients. The test set, used to

test the accuracy or concurrent validity of the automated

ratings, was compared to the reference standard of expert

ratings of the experienced radiologist.

System overview

An overview of the system is shown in Fig. 1. The system

uses routine MRI scans acquired from a DICOM file stored

on a standard laptop computer. The first step in the analysis

is the delineation of the vertebral bodies and then the discs.

The discs are then analyzed for the desired radiological

features, and then classified. Here the automatically gen-

erated classification was compared with the radiologist’s

score of each feature.

Intervertebral disc localization

The radiological scores for analysis of the discs are tied to

each intervertebral disc, with the six discs per patient (T12-

Sacrum) usually visible in standard clinical MRI protocols;

Fig. 1 Overview of the system. The input to the processing

pipeline is a T2 sagittal MRI (including all slices) and the outputs

are the predictions of the radiological features. Shown in a is the

MR volume, which can vary in resolution and number of slices.

The MR volume is first processed by the vertebrae detection

system where we detect and label each lumbar vertebra in the

volume as shown in b where the red boxes are the bounding

regions of detected vertebrae (5). We detect the vertebrae instead

of the discs as they are inherently easier to detect in the MR

volume. From these vertebrae the intervertebral disc region can be

easily extracted from its adjacent pair of vertebrae shown in (6) c.

The image used to illustrate c is from the mid-sagittal slice but in

actuality the disc region is volumetric. For each given MR volume,

we process and analyze six intervertebral discs. The final process

in the pipeline is where the disc volume is classified by a classifier

(d), where we predict radiological features (10) e
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these discs have to be accurately detected. In the first part

of the study, we followed a conventional image analysis

approach that detects vertebral bodies from T12 to S1

[9, 10]. From these detected vertebral bodies, a more

suitable region is defined and annotated, i.e., T12–L1 to

L5–S1, for each spine (Fig. 2).

The detection regions are in the form of 3D bounding

volumes in the scan where each volume includes a disc and

the surrounding upper and lower endplate regions. These

volumes are normalized to reduce the signal inhomogene-

ity across a scan, and are centered on the detected middle

slice for each disc to reduce lateral shifts (for example,

from a scoliosis) (Fig. 3). Examples of the output regions

are shown in Fig. 4.

Radiological scores classification

In the second part of the study, a classifier, which predicts

the radiological features, is then trained using the detected

regions as the input, and the prior determinations of the

radiological features from the experienced radiologist’s

assessments as the output. Since each intervertebral level/

disc possesses eight radiological scores, preferably the

classifier used must be able to simultaneously predict them

without human intervention. To this end, we opted for a

convolutional neural network (cnn), which can both learn

without feature crafting (human input), and classify mul-

tiple scores at once. Hence, there is no need to create

individual descriptors for the classifier suited for each

radiological score. This method is the current state-of-the-

art approach in machine learning, and employs deep

learning [11]. This is the use of multiple layers of

abstraction to describe the relationship between the raw

input data [12]. Another advantage of using a CNN model

as a classifier is the possibility of ease of troubleshooting

predictions of the model. For each prediction of a specific

radiological score, there exists a corresponding probability

that suggests the degree of confidence of the prediction of

the model.

Radiological features

This study has focused on six main radiological features

that can be seen in part or totally on sagittal T2 images

(Fig. 5): (1) Pfirrmann grading, (2) disc narrowing, (3)

spondylolisthesis, (4) central canal stenosis, (5) endplate

defects, and (6) marrow signal variations (Modic changes).

‘Pfirrmann grading’ classifies disc degeneration using

criteria of disc signal heterogeneity, brightness of the

nucleus and disc height into 5 grades [13]. ‘Disc narrow-

ing’ is defined as a multi-class measurement of the disc

heights; 4 grades. In this study, ‘spondylolisthesis’ is a

binary measure of the vertebral slip. ‘Central canal steno-

sis’ is the constriction of the central canal, in the region

adjacent to each intervertebral disc. The radiologist’s score

is based on assessment of both sagittal and axial images, so

we have only studied a binary ‘present’ or ‘absent’ steno-

sis. ‘Endplate defects’ are any deformities of the endplate

regions, both upper and lower, with respect to the inter-

vertebral disc. ‘Marrow signal variations’ can be viewed as

either Type 1 or Type 2 Modic changes, as both T1 and T2

scans are needed to differentiate the two types. Both types

of Modic changes manifest as visible signal variations at

the endplate extending into the vertebral body, observed on

a T2 scan [14]. Table 1 shows a summary of the grading of

each radiological feature and Fig. 5 shows the examples of

each radiological score and some of the output examples of

the system.

Statistical analysis

The performance measure used for validation was ‘class

average accuracy’, this is generally used in image analysis

systems for highly unbalances classifications as occurred in

Fig. 2 Detection process. a
Bounding regions, in red

overlaid on the mid-sagittal

slice of the scan, b the three

views of the whole 3D volumes

of the bounding region, and c
the resulting extracted disc

regions (only mid-sagittal slice

is shown in the examples but in

actuality each disc region

consists of multiple slices)
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Fig. 3 Examples of failure

cases. a Fused vertebral bodies

(L3 and L4). b Transitional

vertebrae shown in the red box

and fused vertebral bodies

above the transitional vertebra.

c Scoliosis. d Scan with poor

contrast and resolution

Fig. 4 Examples of the radiological features on examples of discs.

Pfirrmann Grading and Disc Narrowing are graded on the mid-sagittal

slices, while the other radiological features can appear anywhere in

the volume. The automatic system operates on all slices of the input

scan. Both Pfirrmann Grading and Disc Narrowing have multiple

gradings, 1 to 5 for Pfirrmann and 1 to 4 for disc narrowing, which are

shown in the example. However, the other radiological features are

binary, i.e., the discs are labeled as either normal or pathological, and

the examples shown are pathological examples for each feature
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Fig. 5 a Example of the detected region of the vertebrae and the

corresponding assessments of the mid-sagittal slice of an MRI. The

red boxes are the detected vertebrae regions and the blue boxes are the

extracted disc regions passed through to the classifier. b L2–L3 and

L5–S1 disc volume examples from a and their resulting predictions

computed from the disc volumes. Likewise, d the L1–L2 and L5–S1

disc volume examples from c and the predictions

Table 1 Summary of the six

radiological features predicted

by our system, and a concise

explanation of each grading

Pfirrmann grade 1—homogeneous disc, hyperintense, normal height

2—inhomogeneous disc, hyperintense, normal height

3—inhomogeneous disc, isointense, normal/decreased height

4—inhomogeneous disc, hypointense, normal/decreased height

5—inhomogeneous disc, hypointense, collapsed disc

Disc narrowing 1—normal, disc higher than the upper disc

2—slight, disc as high as the upper disc if it is normal

3—moderate, disc narrower than the upper disc if it is normal

4—severe, endplates almost in contact

Spondylolisthesis 0—normal

1—presence of vertebral slip

Central canal stenosis 0—normal

1—narrow/constricted central canal

Endplate defects 0—normal

1—presence of defects in the endplate region

Marrow changes 0—normal

1—presence of signal intensity variation in the endplate region

1378 Eur Spine J (2017) 26:1374–1383

123



the Genodisc dataset [15], e.g., only 9% of discs showed

upper marrow changes [16, 17]. For our benchmark, the

average class intra-rater agreement was calculated from

two separate sets of labels by the same radiologist on a

subset of the dataset that consists of 121 patients [18]. We

are essentially comparing the radiologist’s reliability

against the reproducibility of our Model.

Results

Intervertebral disc localization

Figure 2 shows a typical result of the detection process

summarized in Fig. 1. The bounding regions in red are

overlaid on the mid-sagittal slice of the scan and the

detected vertebrae are enclosed in red boxes.

The system achieved 95.6% vertebral body detection

and labeling accuracy and managed to detect corners of

the vertebral bodies with a maximum error of 2 mm

[14]. The cases in which detection failed can be grouped

into two main types: (1) corrupted/poor scan quality, and

(2) presence of a transitional vertebra near the sacrum.

Examples of problems with detection are shown in

Fig. 3.

Radiological scores classification

The distribution of scores per disc for each radiological

score can be seen in Table 2 (Genodisc data) and typical

MRIs are shown in Fig. 4.

Figure 5 shows typical gradings of discs by the sys-

tem for two separate spinal MRIs. Our system consis-

tently achieved comparable performance when

comparing the radiologist intra-rater agreement (agree-

ment between the two sets of readings done by the

radiologist at different times) and the accuracy of the

system; see the second and third columns of Table 3.

Reliability coefficients for repeated assessments by the

radiologist (intra-rater) and the automated versus radi-

ologist’s assessments can be seen in the fourth and fifth

columns of Table 3.

Comparison of readings between radiologist

and model

A comparison of the scores of the radiologist with the

scores of the system is shown in a histogram (Fig. 6) for

the same test spines. Figure 6a shows the relative gradings

of Pfirrmann scores, and Fig. 6b shows the relative grad-

ings for disc narrowing. Figure 6c shows a comparison of

the binary readings for spondylolisthesis, central canal

stenosis, endplate defects and marrow changes. While the

comparisons are good, the main trend is that the model

tends to predict more abnormal/pathological features than

the radiologist.

Kappa statistics showed that the automated system

achieved consistently comparable performance when

comparing the radiologist intra-rater agreement (agreement

between the two sets of readings done by the radiologist at

different times) and the accuracy of the system (second and

third columns of Table 3). Kappa values for repeated

assessments by the radiologist (intra-rater) and the auto-

mated versus radiologist’s assessments can be seen in the

fourth and fifth columns of Table 3.

We found that only 3.9% of the discs in the test set have

differences of more than one Pfirrmann grade between our

method’s determination and the radiologist’s. We found,

on average, the difference between the intra-rater agree-

ment and our model is around 0.4%.

Evidence hotspots

Figure 7 shows examples of evidence hotspots obtained by

the automated method. For each prediction of a specific

radiological score, there exists a corresponding heatmap,

which shows where in the disc region the abnormality lies.

These heatmaps, the ‘‘evidence hotspots’’, can be seen to

Table 2 Distribution of the

scores of the intervertebral discs

in the Genodisc study marked

by a radiologist

Radiological features scores Distribution

Pfirrmann grade (1–5) 3862 (1), 1754 (2), 2800 (3), 2415 (4), 1163 (5)

Disc narrowing (1–4) 7186 (1), 1375 (2), 2185 (3), 1243 (4)

Spondylolisthesis (0–1) 11,515 (0), 469 (1)

Central canal stenosis (0–1) 11,271 (0), 710 (1)

Upper endplate defect (0–1) 10,952 (0), 1034 (1)

Lower endplate defect (0–1) 10,927 (0), 1056 (1)

Upper marrow change (0–1) 10,077 (0), 1815 (1)

Lower marrow change (0–1) 10,069 (0), 1824 (1)

Scores listed are binary, labeled 0 normal and 1 pathological, except for Pfirrmann grade and disc nar-

rowing which have multiple classes
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be highly specific to the score although they are only

trained from labels indicating the presence and absence of a

specific radiological feature such as marrow changes, i.e., a

disc-specific grading instead of voxel-specific label [19].

Another advantage of using a CNN as a classifier is the

ease of troubleshooting predictions of the model. These

hotspots could be beneficial in aiding radiologists in

assessing scans and can act as a validity check for the

actual predictions of the CNN model.

Discussion

Here we developed an automated system for classifying

MRI features of disc degeneration, based on a multi-centre

clinical dataset (Genodisc) of 2008 lumbar scans. Our

automated method takes around 1–2 min to process a scan.

The bottleneck in this process is the detection system. For

scans of adequate quality, the vertebral bodies and discs

were detected accurately in 95.6% scans (Fig. 2) with

detection failing only if scans were corrupted or of poor

quality, or if transitional vertebrae were present (Fig. 3).

The entirety of the disc regions of the scans were used as

the input data for classification of the radiological features

scored (Fig. 4) as shown by the examples in Fig. 5. No

extra annotations were used for the classification task; it

was dependent only on the assessments provided by the

radiologist. We used the reference standard of a single

expert radiologist, with repeat measurement on a randomly

selected cohort. The best model trained by us achieves

extremely good performance on all its trained tasks,

consistently close to the performance of the radiologist

(Table 3). On average, we found the difference between

the intra-rater agreement and our model is around 0.4%,

which suggests that the model is a close automated analog

of the radiologist in terms of radiological reading. A novel

feature of the Model is to identify ‘Evidence Hotspots’ that

are the voxels that most contribute to the degradation

scores (Fig. 7).

In this study, our system excelled at determining Pfirrmann

and disc narrowing grades on a relevant data set of clinical

images, both in terms of accuracies and reliability scores

(Kappa values). The method currently only produced com-

parable performance in terms of accuracies (compared to

intra-rater agreement), but not reliability scores, for the other

radiological scores [spondylolisthesis, central canal stenosis,

endplate changes (Table 3)]. We theorized that this arises

because: (1) the systemwas trained toperformwell onaverage

class accuracy rather than reliability scores [15], and (2) there

were relatively few discs with pathological features such as

spondylolisthesis or endplate defects. Furthermore, since our

system currently operates only on sagittal scans, assessments

such as Central Canal Stenosis, which requires both axial and

sagittal information, would tend to have a lower performance.

We plan on adding the capability to process both axial and

sagittal scans in the near future to see if we can improve upon

the performance on reliability scores. We also anticipate that

we could also use ourmethod and validate it against other disc

degeneration classification systems [20–22]. Others have

reported results of automated image analysis of lumbar MRI

scans, but not on the scale that we have reported here [8]. In

addition, these systems require human supervision but in our

Table 3 The performance of our system

Radiological

scores

Class average intra-rater

agreement (radiologist vs.

radiologist) (%)

Class average accuracy

(system vs. radiologist)

(%)

Intra-rater reliability

coefficient (radiologist vs.

radiologist)

Reliability coefficients

(system vs. radiologist)

Pfirrmann grade 70.4 70.1 0.91 0.88

Disc narrowing 72.4 75.4 0.89 0.89

Spondylolisthesis 89.6 95.4 0.79 0.59

Central canal

stenosis

79.7 94.7 0.61 0.52

Upper endplate

defect

80.7 86.7 0.65 0.49

Lower endplate

defect

83.3 88.3 0.69 0.55

Upper marrow

change

92.5 89.7 0.86 0.63

Lower marrow

change

91.4 89.1 0.83 0.62

The second and third columns correspond to the agreement/accuracy measure, which compares the human performance (second column), i.e., the

radiologist against our system (third column). Similarly, we provide a comparison of another measure, the reliability coefficients for the

radiologist and the system in the fourth and fifth columns where we use Lin’s concordance correlation coefficient to evaluate reproducibility of

ordinal ratings while Cohen’s kappa coefficient was used for dichotomous ratings (Maji, 2013 #2324)
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method, there is noneed tocreate individual descriptors for the

classifier suited for each radiological score (Lootus et al. [9]

and Castro-Mateos et al. [8]).

It is important to note that the gradings provided by the

automated system are learnt from the gradings presented to

it, i.e., they depend on the reference standard. If the system,

trained on the same dataset, used an assessment of grading

scores, which differed somewhat from those presented

here, the grades provided by the automated system would

differ accordingly. The grading scores are nevertheless

objective and consistent. We thus think that the automated

scoring system, through its speed, consistency and

387

219

261
233

108

379

236 244

203

146

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

Pfirrmann Grading

Radiologist Model

727

146
211

124

653

231
175 149

0

100

200

300

400

500

600

700

800

1 2 3 4

Disc Narrowing

Radiologist Model

0
200
400
600
800

1000
1200
1400

Normal Abnormal

Binary Radiological Features

Spondylolisthesis - Radiologist Spondylolisthesis - Model

Central Canal Stenosis - Radiologist Central Canal Stenosis - Model

Upper Endplate Defect - Radiologist Upper Endplate Defect - Model

Lower Endplate Defect - Radiologist Lower Endplate Defect - Model

Upper Marrow Change - Radiologist Upper Marrow Change - Model

Lower Marrow Change - Radiologist Lower Marrow Change - Model

(a)

(b)

(c)

Fig. 6 a Pfirrmann grading; b disc narrowing; c binary radiological

features. Histogram of the scores of the model compared with the

radiologist. Pfirrmann grading and disc narrowing are tabulated in

different sub-figures. The main trend is that the prediction from the

model tends to predict more abnormal/pathological cases than the

radiologist
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objectivity, would be of particular value in providing an

objective set of MRI grading scores for phenotyping disc

degeneration in studies involving large cohorts of spinal

MRIs.

Conclusions

We have shown that radiological scores can be predicted to

an excellent standard using only the disc-specific assess-

ments as a reference set. The proposed method is quite

general, and although we have implemented it here for

sagittal T2 scans, it could easily be applied to T1 scans or

axial scans, and for radiological features not studied here or

indeed to any medical task where label/grading might be

available only for a small region or a specific anatomy of

an image. One benefit of automated reading is to produce a

numerical signal score that would provide a scale of

degeneration and so avoid an arbitrary categorization into

artificial grades.
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Fig. 7 Examples of disc volumes (upper in each pair) and their

corresponding evidence hotspots (lower in each pair). The leftmost

and rightmost images are the second and eighth slice for each disc,

out of the full volume of 9 slices. Going from top to bottom are: i

upper endplate defects, ii lower endplate defects, iii upper marrow

change, iv lower marrow change, v spondylolisthesis, and vi central

canal stenosis. Pathological examples are shown for each radiological

score/classification task, with endplate defects appearing as

protrusions of the discs into the vertebral bodies, and marrow

changes appearing as localized discolorations of the vertebral bodies

near the vertebral endplates. Note that these hotspots localize

extremely well, e.g., in the lower endplate defects example the

hotspots appear only in the lower endplate even though there are

defects on the upper endplate. These examples are randomly selected

from different patients
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