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Abstract
Non-vascular plants associating with arbuscular mycorrhizal (AMF) and Mucoromycotina ‘fine root endophyte’ (MFRE) 
fungi derive greater benefits from their fungal associates under higher atmospheric  [CO2]  (a[CO2]) than ambient; how-
ever, nothing is known about how changes in  a[CO2] affect MFRE function in vascular plants. We measured movement of 
phosphorus (P), nitrogen (N) and carbon (C) between the lycophyte Lycopodiella inundata and Mucoromycotina fine root 
endophyte fungi using 33P-orthophosphate, 15 N-ammonium chloride and 14CO2 isotope tracers under ambient and elevated 
 a[CO2] concentrations of 440 and 800 ppm, respectively. Transfers of 33P and 15 N from MFRE to plants were unaffected 
by changes in  a[CO2]. There was a slight increase in C transfer from plants to MFRE under elevated  a[CO2]. Our results 
demonstrate that the exchange of C-for-nutrients between a vascular plant and Mucoromycotina FRE is largely unaffected 
by changes in  a[CO2]. Unravelling the role of MFRE in host plant nutrition and potential C-for-N trade changes between 
symbionts under different abiotic conditions is imperative to further our understanding of the past, present and future roles 
of plant-fungal symbioses in ecosystems.

Keywords Atmospheric  CO2 · Endogonales · Fine root endophytes · Lycopodiella inundata · Mucoromycotina · Vascular 
plants

Introduction

Changes in atmospheric  CO2 concentration  (a[CO2]) have 
been a prominent feature throughout Earth’s environmental 
history (Leaky and Lau 2012). Geochemical models support  
fossil and stable isotope evidence indicating that the global 
environment underwent major changes throughout the Pal-
aeozoic Era (541–250 Ma) (Berner et al. 2006; Bergman 
et al. 2004; Lenton et al. 2016), consisting of a stepwise 

increase of the Earth’s atmospheric oxygen  ([O2]), and a 
simultaneous decline in  a[CO2]. Today, Earth faces environ-
mental changes on a similar scale, but with  a[CO2] instead 
rising at an unprecedented rate (Meinshausen et al. 2011; 
Wilson et al. 2017).

Long before plants migrated onto land, Earth’s terres-
trial surfaces were colonised by a diverse array of microbes, 
including filamentous fungi (Blair 2009; Berbee et al. 2017). 
Around 500 Mya, plants made the transition from an aquatic 
to a terrestrial existence (Morris et al. 2018), facilitated by 
symbiotic fungi (Nicolson 1967; Pirozynski and Malloch 
1975). These ancient fungal symbionts are thought to have 
played an important role in helping early land plants access 
scarce nutrients from the substrate onto which they had 
emerged, in much the same way as modern-day mycorrhizal 
fungi form nutritional mutualisms with plants (Pirozynski  
and Malloch 1975; Krings et al. 2012; Strullu-Derrien et al. 
2014). It is highly likely that ancient mycorrhiza-like (or 
paramycorrhiza sensu Strullu-Derrien and Strullu 2007) 
fungi were closely related to, and subsequently evolved into, 
modern arbuscular mycorrhizal fungi (AMF) belonging to 
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the fungal subphylum Glomeromycotina (also referred to as 
phylum Glomeromycota) (Redecker et al. 2000; Spatafora 
et al. 2017; Wijayawardene et al. 2018; Radhakrishnan et al. 
2020).

Recently, it was discovered that extant non-vascular 
plants, including the earliest divergent clade of liverworts, 
associate with a greater diversity of fungi than was previ-
ously thought, notably forming endophytic associations with 
Endogonales, members of the Mucoromycotina (Bidartondo 
et al. 2011; Desirò et al. 2014; Strullu-Derrien et al. 2014; 
Rimington et al. 2015; Field et al. 2015a). Mucoromyco-
tina is a partially saprotrophic fungal lineage (Bidartondo 
et al. 2011; Field et al. 2015b, 2016) sister to, or pre-dating, 
the Glomeromycotina AMF, both within Mucoromycota  
(Spatafora et al. 2017). This discovery, together with the 
emerging fossil evidence (Strullu-Derrien et al. 2014) and 
the demonstration that liverwort-Mucoromycotina fungal 
associations are nutritionally mutualistic (Field et al. 2015a; 
2019) and often co-occur with AMF (Field et al. 2016), sug-
gests that earlier land plants had greater symbiotic options 
available to them than was previously thought (Field et al. 
2015b). Studies now show that symbioses with Mucoromy-
cotina fungi are not limited to non-vascular plants but span 
almost the entire extant land plant kingdom (Rimington 
et al. 2015, 2020; Orchard et al. 2017a; Hoysted et al. 2018, 
2019), suggesting that this ancient association may also have 
key roles in modern terrestrial ecosystems.

The latest research into the functional significance of 
plant-Mucoromycotina fine root endophyte (MFRE) asso-
ciations indicates that MFRE play a complementary role 
to AMF by facilitating plant nitrogen (N) assimilation 
alongside AMF-facilitated plant phosphorus (P) acquisi-
tion through co-colonisation of the same plant host (Field 
et al. 2019). Such functional complementarity is further sup-
ported by the observation that MFRE transfer significant 
amounts of 15 N but relatively little 33P tracers to a host 
lycophyte, Lycopodiella inundata, in the first experimental 
demonstration of MFRE nutritional mutualism in a vascu-
lar plant (Hoysted et al. 2019). These results contrast with 
the majority of studies on MFRE and fine root endophytes 
(FRE) which have, to date, focussed on the role of the fungi 
in mediating plant phosphorus (P) acquisition (Orchard et al. 
2017b, and literature within; Albornoz et al. 2020).

Today, plant-symbiotic fungi play critical roles in eco-
system structure and function. The bidirectional exchange 
of plant-fixed carbon (C) for fungal-acquired nutrients that 
is characteristic of most mycorrhizal symbioses (Field 
and Pressel 2018) holds huge significance for carbon and 
nutrient flows and storage across ecosystems (Leake et al. 
2004; Rillig 2004; Averill et al. 2014). By forming mutual-
istic symbioses with the vast majority of plants, including 

economically important crops, mycorrhizal fungi have  
great potential for applications within a variety of sustain-
able management strategies in agriculture, conservation 
and restoration. Application of diverse mycorrhiza-forming 
fungi, including both AMF and MFRE, to promote sustain-
ability in agricultural systems is particularly relevant in the 
context of global climate change and depletion of natural 
resources (Field et al. 2020). The MFRE in particular may 
hold potential for agricultural applications to reduce use of 
chemical fertilisers within sustainable arable systems where 
routine over-use of N-based mineral fertilisers causes detri-
mental environmental and down-stream economic impacts 
(Thirkell et al. 2019), but realising this potential relies on 
improving our current understanding of MFRE diversity and 
function. Changes in abiotic factors such as  a[CO2] (Cotton 
2018), which is predicted to continue rising in the future 
(Meinshausen et al. 2011), have been shown to affect the 
rate and quantity of carbon and nutrients exchanged between 
mycorrhizal partners (Field et al. 2012, 2015a, 2016; Zheng 
et al. 2015; Thirkell et al. 2019). As such, insights into the 
impact of environmental factors relevant to future climate 
change on carbon for nutrient exchange between symbiotic 
fungi and plants must be a critical future research goal.

Experiments with liverworts associating with MFRE 
fungi, either in exclusive or in dual symbioses alongside 
AMF, suggest that these plants derive less benefit in terms 
of nutrient assimilation from their MFRE associates under 
a high  a[CO2] (1500  ppm) than under a lower  a[CO2] 
(440 ppm) (Field et al. 2015a, 2016), with the opposite being 
the case for liverworts associated only with AMF (Field 
et  al. 2012). However, when vascular plants (Osmunda 
regalis and Plantago lanceolata) with AMF associations 
were exposed to high  a[CO2], there were no changes in 
mycorrhizal-acquired plant P assimilation (Field et al. 2012). 
Whether vascular plant-MFRE symbioses respond to chang-
ing  a[CO2] is unknown.

Here, using stable and radioisotope tracers, we investi-
gate MFRE function in Lycopodiella inundata, a homospor-
ous perennial lycophyte widely distributed in the northern 
hemisphere (Rasmussen and Lawesson 2002) that associ-
ates almost exclusively with MFRE fungal partners (Kowal 
et al. 2020), and how it responds to climate change-relevant 
shifts in  a[CO2]. Specifically, we test the hypotheses that (a) 
MFRE acquire greater amounts of plant-fixed C under high 
 a[CO2] of 800 ppm as a result of there being larger amounts 
of photosynthate available for transfer because of greater 
rates of C fixation by the plant via photosynthesis, and (b), 
increased C allocation from plant to fungus increases trans-
fer and assimilation of 15 N and 33P tracers from MFRE to 
plants to feed growing plant demand for nutrients to promote 
growth.
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Methods

Plant material and growth conditions

Mature Lycopodiella inundata (L.) plants were collected 
from the wild in Thursley National Nature Reserve, Sur-
rey, UK (SU 90,081 39,754), in June 2017. The L. inun-
data plants, which were weeded regularly to remove 
other plant species, were planted directly into pots (90-
mm diameter × 85-mm depth) containing a homogeneous 
mixture of acid-washed silica sand and 5% pot volume 
compost (No. 2; Petersfield) to aid retention properties of 
the substrate and to provide minimal nutrients. Soil sur-
rounding plant roots (approximately one-fifth of the pot 
volume) was left intact to prevent damage to the roots and 
to act as a natural inoculum, including symbiotic fungi and 
associated microorganisms.

Based on the methods of Field et al. (2012), three win-
dowed cylindrical plastic cores covered in 10-μm nylon 
mesh were inserted into the substrate within each experi-
mental pot (see supplementary online material Fig. S1). 
Two of the cores were filled with the same substrate as 
the bulk soil within the pots, comprising a homogeneous 
mixture of acid-washed silica sand and compost (No. 2; 
Petersfield), together making up 95% of the core volume, 
native soil gathered from around the roots of wild plants to 
ensure cores contained the same microbial communities as 
in the bulk soil (4% core volume), and fine-ground tertiary 
basalt (1% core volume) to act as fungal bait (Field et al. 
2015a). The third core was filled with glass wool to allow 
below-ground gas sampling throughout the 14C-labelling 
period to monitor soil community respiration. Plants were 
watered every other day with distilled water with no other 
application of nutrient solutions. Microcosms shared a 
common drip tray within each cabinet only through the 
acclimation period, ensuring a common pool of rhizos-
pheric microorganisms in each microcosm.

A total of 48 L. inundata microcosms were maintained 
in controlled environment chambers (model no. Micro 
Clima 1200; Snijders Labs) with a light cycle of 16-h 
daytime (20 °C and 70% humidity) and 8-h night-time 
(at 15 °C and 70% humidity). Daytime photosynthetically 
active radiation (PAR), supplied by LED lighting, was 
225 μmol photons  m−2  s−1 (similar to what L. inundata 
experience in the wild). Plants were grown at two con-
trasting  CO2 atmospheres: 440 ppm  a[CO2] (24 plants) to 
represent a modern-day atmosphere or 800 ppm  a[CO2] 
(24 plants) to simulate Palaeozoic atmospheric condi-
tions on Earth at the time vascular plants are thought to 
have diverged (Berner 2006) as well as predicted  a[CO2] 
for 2100 (Meinshausen et al. 2011). Atmospheric  [CO2] 
was monitored using a Vaisala sensor system (Vaisala, 

Birmingham, UK), maintained through addition of gase-
ous  CO2. All pots were rotated within cabinets, and plants 
were switched between cabinets with  a[CO2] adjusted 
accordingly every 2 weeks to control for possible cabi-
net and block effects. Plants were acclimated to cham-
ber/growth regimes for 4 weeks to allow establishment 
of mycelial networks within pots. Before initiation of 
radioisotope labelling, mycelial networks were confirmed 
by destructively collecting soil from a rotated core for 
hyphal extraction and subsequent staining with trypan blue  
(Brundrett et  al. 1996). Additionally, main roots were 
stained with acidified ink for the presence of fungi, based 
on the methods of Brundrett et al. (1996). All plants were 
processed for molecular identification of fungal symbionts 
within 1 week of collection from the wild and at the end of 
the experimental period using the protocol in Hoysted et al. 
(2019). Briefly, genomic DNA extraction and purification 
from L. inundata roots and subsequent amplification, clon-
ing and sequencing were performed according to the meth-
ods of Rimington et al. (2015). The fungal 18S ribosomal 
rRNA gene was targeted using the fungal primer set NS1/ 
EF3 and a semi-nested approach with Mucoromycotina-  
and Glomeromycotina-specific primers described in  
Desirò et al. (2014).

Cytological analyses

Roots of experimental L. inundata plants were stained with 
trypan blue (Brundrett et al. 1996), which is common for iden-
tifying MFRE (Orchard et al. 2017b), and photographed under 
a Zeiss Axioscope (Zeiss, Oberkochen, Germany) equipped 
with a MRc digital camera. To quantify root colonisation by 
MFRE, five plants were randomly selected per treatment, and 
from these two intact, healthy roots (per plant) were excised 
and sectioned transversally in up to six segments (depending 
on root length) before being processed for scanning electron 
microscopy according to Duckett et al. (2006). Percentage 
root colonisation was then calculated by scoring each seg-
ment (from a total of 56 and 58 segments respectively for the 
elevated and ambient  a[CO2] treatments) as colonised or non-
colonised under the scanning electron microscope (Fig. 1).

Quantification of C, 33P and 15 N fluxes between lyco-
phytes and fungi.

After the 4-week acclimation period, microcosms were 
moved to individual drip trays immediately before isotope 
labelling to avoid cross-contamination of the isotope trac-
ers. A total of 100 μl of an aqueous mixture of 33P-labelled 
orthophosphate (specific activity 111 TBq  mmol−1, 0.3 ng 
33P added; Hartmann analytics) and 15 N-ammonium chlo-
ride (1 mg  ml−1; 0.1 mg 15 N added; Sigma-Aldrich) was 
introduced into one of the soil-filled mesh cores in each 
pot through the installed capillary tube. In half (n = 12) of 
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the pots, cores containing isotope tracers were left static 
to preserve direct hyphal connections with the lycophytes. 
Fungal access to isotope tracers was limited in the remaining 
half (12) of the pots by rotating isotope tracer-containing 
cores through 90°, thereby severing the hyphal connections 
between the plants and core soil. These were rotated every 
second day thereafter, thus providing a control treatment 
that allows us to distinguish between fungal and microbial 
contributions to tracer uptake by plants, as well as passive 
diffusion of isotopes through the soil matrix. Assimilation of 
33P tracer into above-ground plant material was monitored 
using a hand-held Geiger counter held over the plant mate-
rial daily.

At detection of peak activity in above-ground plant tis-
sues (21 days after the addition of the 33P and 15 N tracers), 
the tops of 33P and 15 N-labelled cores were sealed with 
plastic caps and anhydrous lanolin, and the glass-wool cores 
were sealed with rubber septa (Suba-Seal, Sigma-Aldrich). 
Before lights were switched on at 8 a.m., each pot was sealed 
into a 3.5-l, gas-tight labelling chamber, and 2 ml 10% (w/v) 
lactic acid was added to 30 μl  NaH14CO3 (specific activity 
1.621 GBq/mmol−1; Hartmann Analytics), releasing a 1.1-
MBq pulse of 14CO2 gas into the headspace of the labelling 
chamber. Pots were maintained under growth chamber con-
ditions, and 1 ml of headspace gas was sampled after 1 h and 
every 1.5 h thereafter. Below-ground respiration was moni-
tored via gas sampling from within the glass-wool-filled core 
after 1 h and every 1.5 h thereafter for ~ 16 h.

Plant harvest and sample analyses

Upon detection of maximum below-ground flux of 
14C, ~ 16 h after the release of the 14CO2 pulse, each micro-
cosm compartment (i.e. plant material and soil) was sepa-
rated, freeze-dried, weighed and homogenised using a 

TissueLyser LT with steel ball bearings (Qiagen). The 33P 
activity in plant (shoots and roots) and soil samples (cores 
and bulk) was quantified by digesting in concentrated  H2SO4 
and liquid scintillation (Tricarb 3100TR liquid scintillation 
analyser, Isotech). The quantity of 33P tracer that was trans-
ferred to a plant by its fungal partner was then calculated 
using previously published equations (Cameron et al. 2007). 
To determine total symbiotic fungal-acquired 33P transferred 
to L. inundata, the mean 33P content of plants that did not 
have access to the tracer because cores into which the 33P 
was introduced were rotated was subtracted from the total 
33P in each plant that did have access to the isotopes within 
the core via intact fungal hyphal connections (i.e. static 
cores). This calculation controls for diffusion of isotopes 
and microbial nutrient cycling in pots, ensuring only 33P 
gained by the plant via intact fungal hyphal connections, are 
accounted and therefore serve as a conservative measure of 
the minimum fungal transfer of tracer to the plant.

Between 2 and 4 mg of freeze-dried, homogenised plant 
tissue (both shoots and roots, separately) was weighed into 
6 × 4  mm2 tin capsules (Sercon), and 15 N abundance was 
determined using a continuous flow IRMS (PDZ 2020 
IRMS, Sercon). Air was used as the reference standard, and 
the IRMS detector was regularly calibrated to commercially 
available reference gases. The 15 N transferred from fungus 
to plant was then calculated using equations published pre-
viously in Field et al. (2016). In a similar manner as for the 
33P, the mean of the total 15 N in plants without access to the 
isotope because of broken hyphal connections between plant 
and core contents was subtracted from total 15 N in each 
plant with intact hyphal connections to the mesh-covered 
core to give fungal-acquired 15 N. Again, this provides a 
conservative measure of 15 N transfer from fungus to plant 
as it ensures only 15 N gained by the plant via intact fungal 
hyphal connections is accounted.

Fig. 1  Experimental Lycopodiella roots colonised by MFRE. a 
Light micrographs of trypan blue stained roots showing fine branch-
ing hyphae with intercalary and terminal small vesicles (see insert). 
b Scanning electron micrograph (SEM) of transverse section of root 
showing abundant branching hyphae (*) and vesicles (arrowed). 

SEMs at this magnification (× 150) were used to quantify % colonisa-
tion of roots of experimental plants grown under the two contrasting 
atmospheric  [CO2] regimes, shown here in a plant grown under the 
elevated  a[CO2] of 800  ppm. Scale bars: a (and a insert) 50  μm; b 
100 μm
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The 14C activity of plant (shoots and roots) and soil (cores 
and bulk) samples was quantified through sample oxidation 
(307 Packard Sample Oxidiser, Isotech) followed by liquid 
scintillation. Total C (12C + 14C) fixed by the plant and trans-
ferred to the fungal network was calculated as a function 
of the total volume and  CO2 content of the labelling cham-
ber and the proportion of the supplied 14CO2 label fixed by 
plants. The difference in total C between the values obtained 
for static and rotated core contents in each pot is considered 
equivalent to the total C transferred from plant to symbi-
otic fungus within the soil core for that microcosm, noting 
that a small proportion will be lost through soil microbial 
respiration (Cameron et al. 2006). The total C budget for 
each experimental pot was calculated using equations from 
Cameron et al. (2006). Total percent allocation of plant-fixed 
C to extraradical symbiotic fungal hyphae was calculated by 
subtracting the activity (in becquerels, Bq) of rotated core 
samples from that detected in static core samples in each pot, 
dividing this by the sum of activity detected in all compo-
nents (shoots, roots, static and rotated cores, and bulk soil) 
of each microcosm, then multiplying it by 100.

Statistics

Effects of  a[CO2] on the C, 33P and 15 N fluxes between 
L. inundata and MFRE fungi were tested using analysis of 
variance (ANOVA) or Mann–Whitney U where indicated. 
Data were checked for homogeneity and normality using the 
Kolmogorov–Smirnov test. Where assumptions for ANOVA 
were not met, data were transformed using  log10. If assump-
tions for ANOVA were still not met, a Mann–Whitney U test 
was performed. Significant differences comparing the pro-
portion of root segments colonised and differences across the 
population of root segments were analysed using a Fisher’s 
exact and an unpaired t-test, respectively. All statistics were 
carried out using the statistical software package SPSS Ver-
sion 24 (IBM Analytics).

Results

Molecular identification of fungal symbionts

Analysis of experimental Lycopodiella inundata plants 
grown under ambient and elevated  a[CO2] confirmed that 
they were colonised by Mucoromycotina fine root endo-
phyte fungi within Endogonales. Glomeromycotina fungal 
sequences were not detected. Mucoromycotina OTUs that 
have previously been identified in wild-collected lycophytes 
from diverse locations (Rimington et al. 2015; Hoysted et al. 
2019) were detected before and after the experiments (Gen-
Bank/EMBL accession numbers: MK673773-MK673803).

Cytology of fungal colonisation in plants

Trypan blue staining and SEM of L. inundata roots grown 
under ambient and elevated  a[CO2] revealed the same fun-
gal symbiont morphology consistent with that previously 
observed for L. inundata-Mucoromycotina FRE (Hoysted 
et  al. 2019) and MFRE colonisation in other vascular 
plants (Orchard et al. 2017a) including fine branching, 
aseptate hyphae (< 2-μm diameter) with small intercalary 
and terminal swellings/vesicles (usually 5–10- but up to 
15-μm diameter) but, differently from those in flowering 
plants, no arbuscules (Fig. 1). There was a significant 
difference across the population of root segments in the 
percentage of individual root fragments colonised grown 
under contrasting  a[CO2] (supplementary online mate-
rial Fig. S2). Root segments from plants grown under 440 
 a[CO2] had a significantly lower mean percent colonisa-
tion compared to root segments from plants grown under 
800 ppm  a[CO2] (t = 2.182; df = 106.9, n = 58, 54).

C transfer from L. inundata to MFRE symbionts

The amount of carbon allocated from L. inundata to MFRE 
fungi under elevated  a[CO2] concentrations compared to 
that when plants were grown under  a[CO2] of 440 ppm 
was not statistically significant (Fig. 2a; Mann–Whitney 
U = 194, P = 0.864, n = 24); nevertheless, the transfer was 
2.8 times greater at 800 ppm than at 440 ppm. In terms of 
total C transferred from plants to MFRE (carbon in core, 
ng), similarly, L. inundata transferred ca. 2.7 times more C 
to MFRE fungal partners at elevated  a[CO2] concentrations 
of 800 ppm compared to those under  a[CO2] of 440 ppm 
(Fig. 2b; Mann–Whitney U = 197.5, P = 0.942, n = 24).

Fungus‑to‑lycophyte 33P and 15 N transfer

Mucoromycotina FRE transferred both 33P and 15 N to L. inundata  
in both  a[CO2] treatments (Fig. 3). There were no signifi-
cant differences in the amounts of either 33P or 15 N tracer  
acquired by MFRE in L. inundata plant tissue when grown 
under elevated  a[CO2] of 800 ppm compared to plants grown 
under  a[CO2] conditions of 440 ppm, either in terms of absolute 
quantities (Fig. 3a; ANOVA [F1, 23 = 0.009, P = 0.924, n = 10]; 
Fig. 3b; ANOVA [F1, 22 = 0.126, P = 0.726, n = 10]) or when 
normalised to plant biomass (Fig. 3c ANOVA [F1, 23 = 0.085, 
P = 0.774, n = 10]; Fig. 3d; ANOVA [F1, 22 = 0.770, P = 0.390, 
n = 10]). Although not significantly different, there was more 
nitrogen transferred from MFRE under ambient  a[CO2] com-
pared to elevated  a[CO2] (Fig. 3d). Within the experimental 
microcosms, MFRE transferred 6.65% (± 2.55) 33P and 0.07% 
(± 0.02) 15 N tracer under ambient  a[CO2] and 6.9% (± 4.75) 
33P and 0.03% (± 0.18) 15 N tracer under elevated  a[CO2].
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Fig. 2  Carbon exchange between Lycopdiella inundata and Muco-
romycotina fine root endophyte fungi (MFRE). (a)  % allocation of 
plant-fixed C to MFRE. (b) Total plant-fixed C transferred to Muc-
orocomycotina FRE by L. inundata. All experiments were conducted 
at an ambient  a[CO2] of 440  ppm (grey bars) and elevated  a[CO2] 

of 800 ppm (white bars). All bars in each panel represent the differ-
ence in isotopes between the static and rotated cores inserted into 
each microcosm. In all panels, error bars denote standard error of the 
mean. In panels (a, b), n = 24 for 800 ppm and for 440 ppm  a[CO2]

Fig. 3  Fungal-acquired nutri-
ents by Mucoromycotina fine 
root endophyte (MFRE) fungi 
and total shoot nutrients in 
above-ground plant tissue of L. 
inundata. (a) Total plant tissue 
33P content (ng) and (b) total 
plant tissue 15 N content (ng) 
in L. inundata tissue. (c) Tis-
sue concentration (ng  g−1) of 
fungal-acquired 33P and (d) 
tissue concentration of 15 N 
(ng  g−1) in shoot tissue of L. 
inundata. (e) Total shoot P 
content (mg) equating to both 
plant and fungal-acquired P 
and (f) total shoot N content 
(mg) equating to both plant and 
fungal-acquired N in shoots of 
L. inundata. All experiments 
were conducted at an ambient 
 a[CO2] of 440 ppm (grey bars) 
and elevated  a[CO2] of 800 ppm 
(white bars). All bars in each 
panel (a–d) represent the dif-
ference in isotopes between 
the static and rotated cores 
inserted into each microcosm. 
In all panels, error bars denote 
standard error of the mean. In 
panels (a–d), n = 12, and panels 
(e–f), n = 24, for both 800 ppm 
and 440 ppm  a[CO2]

436 Mycorrhiza (2021) 31:431–440



1 3

Discussion

Our results demonstrate for the first time that the exchange 
of C-for-nutrients between a vascular plant and MFRE 
symbionts is largely unaffected by changes in  a[CO2], with 
MFRE maintaining 33P and 15 N assimilation and transfer to 
the plant host across  a[CO2] treatments (Fig. 3a, b), despite 
MFRE colonisation being more abundant within the roots 
of plants grown under elevated  a[CO2]. In our experiments, 
Lycopodiella inundata allocated ca. 2.8 times more photo-
synthate to MFRE under elevated  a[CO2] compared with 
plants that were grown under ambient  a[CO2] (Fig. 2a, b), 
but without a reciprocal increase in fungal-acquired 33P 
or 15 N tracer assimilation. Although the difference in C 
transfer between plants under different  a[CO2] atmospheres 
was not statistically significant, our observation is in line 
with previous studies in which Mucoromycotina fungi (and 
both Mucoromycotina and AMF partners co-colonising the 
same host in ‘dual’ symbiosis) gained a greater proportion of 
recently fixed photosynthates from their non-vascular plant 
partners but did not deliver greater amounts of 33P or 15 N 
tracers when grown under elevated  a[CO2] compared to cur-
rent ambient conditions (Field et al. 2012, 2015a, 2016). 
This contrasts with patterns of carbon-for-nutrient exchange 
between other vascular plants and AMF where increased 
allocation of carbon to fungal symbionts is usually associ-
ated with increases in nutrient delivery from AMF to the 
host plant (Kiers et al. 2011; Wipf et al. 2019). Such vari-
ances may be partly explained by the different lifestyles of 
the partially saprotrophic Mucoromycotina vs. the strictly 
biotrophic Glomeromycotina (Field et al. 2015b, 2016; Field 
and Pressel 2018). Therefore, conventional ‘rules’ governing 
AMF-plant symbioses may not necessarily apply to Mucoro-
mycotina-plant symbioses. It is possible that when  a[CO2] is 
high, liverworts and relatively simple vascular plants such as 
L. inundata produce photosynthates that they are unable to 
utilise effectively for growth or reproduction as they possess 
no or limited vasculature and specialised storage organs to 
transport and store excess carbohydrates (Kenrick and Crane 
1997). Consequently, surplus photosynthates may be either 
stored as insoluble starch granules, transferred directly to 
mycobionts (Field et al. 2016), or released into surrounding 
soil as exudates (Galloway et al. 2018). By moving excess 
photosynthates into mycobionts, the potential risk of patho-
genicity from surrounding saprotrophic organisms such as 
bacteria and fungi may be reduced (Field et al. 2016).

Additionally, the biomass of mycorrhizal fungi may 
increase in response to elevated  a[CO2], but this increase 
does not necessarily result in greater nutrient transfer to 
the host plant (Alberton et al. 2005), instead inducing a 
negative feedback through enhanced competition for nutri-
ents between the symbiotic partners (Fransson et al. 2007). 

Studies on ectomycorrhizal fungi, another group of wide-
spread plant-symbiotic fungi, some of which may act as 
facultative decomposers, showed that, despite an increase 
in the amount of extraradical hyphae under elevated 
 a[CO2], there was no corresponding enhanced transfer of 
N to the host, suggesting that the fungus had become a 
larger sink of nutrients (Fransson et al. 2005). While we 
did not measure fungal biomass in this study, our obser-
vation of greater colonisation in the roots of Lycopodiella 
plants grown under elevated  a[CO2] of 800 ppm compared 
to those grown under ambient concentrations but with no 
corresponding increase in fungus-to-plant N and P transfer 
may suggest a similar scenario.

We observed no difference in the amount of fungal-
acquired 33P tracer transferred to L. inundata sporophytes 
between  a[CO2] treatments. This aligns with the responses 
of MFRE symbionts in non-vascular liverworts which also 
transferred the same amount (or more in the case of Treubia) 
of 33P and more 15 N to plant hosts under ambient  a[CO2] 
compared to elevated  a[CO2] (Field et al. 2015a, 2016). The 
amount of 33P transferred to L. inundata was up to 70 times 
less than has previously being recorded for Mucoromycotina 
in liverworts (Field et al. 2016) and for Glomeromycotina-
associated ferns and angiosperms (Field et al. 2012), despite 
the same amount of 33P being made available, indicating 
that MFRE do not play a critical role in lycophyte P nutri-
tion. MFRE transferred considerable amounts of 15 N to their 
host (see also Hoysted et al. 2019), under both  a[CO2] treat-
ments. This observation together with previous findings that 
MFRE facilitate the transfer of both organic and inorganic 
15 N to non-vascular plants (liverworts) suggest that MFRE 
may play a complementary role to AMF in plant nutrition, 
with a more prominent role in N assimilation than that of 
AMF (Field et al. 2019; Hoysted et al. 2019). While it has 
been shown that AMF can transfer N to their associated host 
(Ames et al. 1983; Hodge et al. 2001), significant doubts 
remain as to the ecological relevance of an AMF-N uptake 
pathway (see Read 1991; Smith and Smith 2011). In par-
ticular, the exact mechanism of N transfer and, more impor-
tantly, the amounts of N transferred via AMF compared to 
the N requirements of the plant remain equivocal (Smith 
and Smith 2011). This murky view of AMF in N transfer, 
coupled with recent molecular re-identification of fine root 
endophytes as belonging within Mucoromycotina and not 
Glomeromycotina (Orchard et al. 2017a) and evidence point-
ing to a significant role of MFRE in 15 N transfer to both 
non-vascular (Field et al. 2015a, 2016, 2019) and vascular 
plants (Hoysted et al. 2019), suggests that effects on plant 
N nutrition previously ascribed to AMF instead might be 
attributable to co-occurring MFRE (Field et al. 2019).

Given that symbioses involving MFRE are much more 
widespread than initially thought, covering a wide variety 
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of habitats (Bidartondo et al. 2011; Rimington et al. 2015, 
2020; Orchard et  al. 2017a, b, c; Hoysted et  al. 2018, 
2019), their role in plant N nutrition and responses to 
high  a[CO2] may have much broader ecological signifi-
cance than previously assumed. It remains critical that we 
test how mycorrhizal plasticity (both AMF and MFRE) 
translates into function in order to understand how climate 
change may affect nutrient fluxes between symbionts in 
the past, present and, importantly, the future (Field and 
Pressel 2018).

In this study, we provide a first assessment of the effects 
of varying  a[CO2] on carbon-for-nutrient exchanges 
between MFRE and a vascular plant. Our results point 
to important differences in responses to changing  a[CO2] 
between MFRE and AMF and between MFRE symbioses 
in vascular vs. non-vascular plants; however, these results 
are so far restricted to one, early diverging, vascular spe-
cies, generally growing in severely N-limited habitats. It 
is now critical that similar investigations are extended to 
a broader range of taxa, including flowering plants known 
to engage in symbiosis with both MFRE and AMF. In 
doing so, efforts towards the potential exploitation of these 
symbiotic fungi to help meet sustainability targets of the 
future may be better informed and the likelihood of suc-
cess vastly improved.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00572- 021- 01033-6.

Acknowledgements We thank Natural England for granting permis-
sion to collect Lycopodiella from Thursley.

Author contributions KJF, SP, JGD and MIB conceived and designed 
the investigation. GAH undertook the physiological analyses and ana-
lysed and interpreted the results. JK undertook staining and scoring of 
fungal symbionts. GAH led the writing; all authors discussed results 
and commented on the article. GAH agrees to serve as the author 
responsible for contact and ensuring communication.

Funding This work is financially supported by the NERC to KJF, SP 
(NE/N00941X/1; NE/S009663/1) and MIB (NE/N009665/1). KJF is 
supported by a BBSRC Translational Fellowship (BB/M026825/1) and 
a Philip Leverhulme Prize (PLP-2017–079).

Data availability Data are available from the corresponding author.

Declarations 

Consent to participate All author’s consent to participate.

Consent for publication All author’s consent to publication.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Alberton O, Kuyper TW, Gorissen A (2005) Taking mycocentrism 
seriously: mycorrhizal fungal and plant responses to elevated 
 CO2. New Phytol 167:859–868

Albornoz FE, Hayes PE, Orchard S, Clode PE, Nazeri NK, Standish 
RJ et al (2020) First cryo-scanning electron images and x-ray 
microanalyses of Mucoromycotinana fine root endophytes in 
vascular plants. Front Microbiol 11:208

Ames RN, Reid CPP, Poter LK, Cambardella C (1983) Hyphal 
uptake and transport of nitrogen from two 15N-labelled sources 
by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. 
New Phytol 95:381–396

Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated compe-
tition between plants and decomposers drives soil carbon stor-
age. Nature 505:543–545

Berbee ML, James TY, Strullu-Derrien C (2017) Early diverging 
fungi: diversity and impact at the dawn of terrestrial life. Annu 
Rev Microbiol 71:41–60

Berner RA (2006) Geocarbsulf: A combined model for Phanero-
zoic atmospheric  O2 and  CO2. Geochim Cosmochim Acta 
70:5653–5664

Bergman NM, Lenton TM, Watson AJ (2004) COPSE: a new model 
of biogeochemical cycling over Phanerozoic time. Am J Sci 
304:397–437

Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett 
JG (2011) The dawn of symbiosis between plants and fungi. 
Biol Lett 7:574–577

Blair JE. (2009). The fungi in the timetree of life. Hedges SB & 
Kumar S. eds.

Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) 
Working with mycorrhizas in forestry and agriculture. Pirie 
Printers, Canberra, Monograph, Australian Centre for Interna-
tional Agricultural Research

Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in 
orchids: evidence from plant-fungus carbon and nitrogen trans-
fers in the green-leaved terrestrial orchid Goodyera repens. New 
Phytol 171:405–416

Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal 
acquisition of inorganic phosphorus by the green-leaved ter-
restrial orchid Goodyera repens. Ann Bot 99:831–834

Cotton TA (2018) Arbuscular mycorrhizal fungal communities 
and global change. An uncertain future FEMS Microbiol Ecol 
94:179

Desirò A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI (2014) 
Fungal symbioses in hornworts: a chequered history. Proc R Soc 
B: Biol Sci 280:20130207

Duckett JG, Carafa A, Ligrone R (2006) A highly differentiated 
glomeromycotean association with the mucilage-secreting, 
primitive antipodean liverwort Treubia (Treubiaceae): Clues to 
the origins of mycorrhizas. Am J Bot 93:797–813

438 Mycorrhiza (2021) 31:431–440

https://doi.org/10.1007/s00572-021-01033-6
http://creativecommons.org/licenses/by/4.0/


1 3

Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling 
DJ (2012) Contrasting arbuscular mycorrhizal responses of vas-
cular and non-vascular plants to a simulated Palaeozoic  CO2 
decline. Nat Comms 3:1–8

Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling 
DJ, Cameron DD et al (2015a) First evidence of mutualism 
between ancient plant lineages (Haplomitropsida liverworts) 
and Mucoromycotina fungi and its response to simulated Pal-
aeozoic changes in atmospheric  CO2. New Phytol 205:743–756

Field KJ, Duckett PS, JG, Rimington WR, Bidartondo MI. (2015b) 
Symbiotic options for the conquest of land. Trends Ecol Evol 
30:477–486

Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, 
Cameron DD et al (2016) Functional analysis of liverworts in 
dual symbiosis with Glomeromycota and Mucoromycotina fungi 
under simulated Palaeozoic  CO2 decline. ISME J 10:1514–1526

Field KJ, Pressel S (2018) Unity in diversity: structural and func-
tional insights into the ancient partnerships between plants and 
fungi. New Phytol 220:996–1011

Field KJ, Bidartondo MI, Rimington WR, Hoysted GA, Beerling 
D, Cameron DD et al (2019) Functional complementarity of 
ancient plant-fungal mutualisms: contrasting nitrogen, phos-
phorus and carbon exchanges between Mucoromycotina and 
Glomeromycotina fungal symbionts of liverworts. New Phytol 
223:908–921

Field KJ, Daniell T, Johnson D, Helgason T (2020) Mycorrhizas for a 
changing world: sustainability, conservation, and society. Plants, 
People, Planet 2:98–103

Fransson FMA, Taylor AFS, Finlay RD (2005) Mycelial production, 
spread and root colonisation by ectomycorrhizal fungi Hebeloma 
crustuliniforme and Paxillus involutus under elevated atmospheric 
 CO2. Mycorrhiza 15:25–31

Fransson FMA, Anderson IC, Alexander IJ (2007) Ectomycorrhizal 
fungi in culture respond differently to increased carbon availabil-
ity. FEMS Microbiol Ecol 61:246–257

Galloway AF, Pederson MJ, Merry B, Marcus SE, Blacker J, Benning 
LG et al (2018) Xyloglucan is released by plants and promotes soil 
particle aggregation. New Phytol 217:1128–1136

Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal 
fungus accelerates decomposition and acquires nitrogen directly 
from organic material. Nature 413:297–299

Hoysted GA, Kowal J, Jacob A, Rimington WR, Duckett JG, Pressel 
S et al (2018) A mycorrhizal revolution. Curr Opin Plant Biol 
44:1–6

Hoysted GA, Jacob A, Kowal J, Giesemann P, Bidartondo MI, Duckett  
JG et  al (2019) Mucoromycotina fine root endophyte fungi 
form nutritional mutualisms with vascular plants. Plant Physiol 
181:565–577

Kenrick P, Crane PR (1997) Origin and early diversification of land 
plants. Smithsonian Institution Press

Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen 
E et al (2011) Reciprocal rewards stabilise cooperation in the myc-
orrhizal symbiosis. Science 333:880–882

Kowal J, Arrigoni E, Serra J, Bidartondo M. (2020). Prevalence and 
phenology of fine root endophyte colonization across populations 
of Lycopodiella inundata. Mycorrhiza: 30(5): 577–587

Krings M, Taylor TN, Dotzler N. (2012). Fungal endophytes as a driv-
ing force in land plant evolution: evidence from the fossil record. 
Biocomplexity Plant-Fungal Interactions: 5–28

Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) 
Networks of power and influence: the role of mycorrhizal myce-
lium in controlling plant communities and agroecosystem func-
tioning. Can J Bot 82:1016–1045

Leaky AD, Lau JA (2012) Evolutionary context for understanding and 
manipulating plant responses to past, present and future atmos-
pheric  [CO2]. Phil Trans R Soc B: Biol Sci 367:613–629

Lenton TM, Dahl TW, Daines SJ, Mills BJW, Ozaki K, Saltzman MR 
et al (2016) Earliest land plants created modern levels of atmos-
pheric oxygen. Proc Nat Acad Sci USA 113:9704–9709

Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, 
Lamarque JF et al (2011) The RCP greenhouse gas concentrations 
and their extensions from 1765 to 2300. Clim Change 109:213

Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S 
et al (2018) The timescale of early land plant evolution. Proc Nat 
Acad Sci USA 115:2274–2283

Nicolson TH. (1967). Vesicular-arbuscular mycorrhiza – a universal 
plant symbiosis. Sci Prog (1933): 561–581

Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson 
DB et al (2017a) Fine endophytes (Glomus tenue) are related to 
Mucoromycotina, not Glomeromycota. New Phytol 213:481–486

Orchard S, Standish RJ, Dickie IA, Renton M, Walker C, Moot D 
et al (2017b) Fine root endophytes under scrutiny: a review of 
the literature on arbuscular-producing fungi recently suggested to 
belong to the Mucoromycotina. Mycorrhiza 27:619–638

Orchard S, Standish RJ, Nicol D, Dickie IA, Ryan MH (2017c) Sam-
ple storage conditions alter colonisation structures of arbuscular 
mycorrhizal fungi and particularly fine root endophyte. Plant Soil 
412:35–42

Pirosynski KA, Malloch DW (1975) The origin of land plants: a matter 
of mycoheterotrophy. Biosyst 6:153–164

Radhakrishnan GV, Keller J, Rich MK, Vernié T, Mbadinga DLM, 
Vigneron N et al (2020) An Ancestral signalling pathway is con-
served in intracellular symbioses-forming plant lineages. Nat 
Plants 6:280–289

Rasmussen KK, Lawesson JE (2002) Lycopodiella inundata in British 
plant communities and reasons for its decline. Watsonia 24:45–56

Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391
Redecker D (2000) Specific PCR primers to identify arbuscular mycor-

rhizal fungi with colonised roots. Mycorrhiza 10:73–80
Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem 

processes. Ecol Lett 7:740–754
Rimington WR, Pressel S, Duckett JG, Bidartondo MI (2015) Fungal 

associations of basal vascular plants: reopening a closed book? 
New Phytol 205:1394

Rimington WR, Duckett JG, Field KJ, Bidartondo M, Pressel S. (2020). 
The distribution and evolution of fungal symbioses in ancient line-
ages of land plants. Mycorrhiza 1–27

Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant 
nutrition and growth: new paradigms from cellular to ecosystem 
scales. Annu Rev Plant Biol 62:227–250

Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell 
M (2017) The fungal tree of life: from molecular systematics to 
genome-scale phylogenies. Microbiol Spec 5:1–32

Strullu-Derrien C, Strullu DG (2007) Mycorrhization of fossil and 
living plants. CR Palevol 6–7:483–494

Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult JP, Strullu 
DG (2014) Fungal associaions in Horneophyton ligneri from the 
Rynie Chert (c. 407 million years old) closely resemble those in 
extant lower land plants: novel insights into ancestral plant-fungus 
symbioses. New Phytol 203:964–979

Thirkell TJ, Pastok D, Field KJ (2019) Carbon for nutrient exchange 
between arbuscular mycorrhizal fungi and wheat varies according 
to cultivar and changes in atmospheric carbon dioxide concentra-
tion. Global Change Biol 26:1725–1738

Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, 
Schüßler A et al (2018) Notes for genera: basal clades of Fungi 
(including Aphelidiomycota, Basidiobolomycota, Blastocladi-
omycota, Calcarisporiellomycota, Caulochytriomycota, Chytridi-
omycota, Entomophthoromycota, Glomeromycota, Kickxellomy-
cota, Monoblepharomycota, Mortierellomycota, Mucoromycota, 
Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoo-
pagomycota). Fungal Diversity 92:43–129

439Mycorrhiza (2021) 31:431–440



1 3

Wilson JP, Montanez IP, White JD, DiMichele WA, McElwain JC, 
Poulson CJ et al (2017) Dynamic Carboniferous tropical forets: 
new views of plant function and potential for physiological forcing 
of climate. New Phytol 215:1333–1353

Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE (2019) 
Trading on the arbuscular mycorrhiza market: from arbuscules 
to common mycorrhizal networks. New Phytol 223:1127–1142

Zheng C, Ji B, Zhang J, Zhang F, Bever JD (2015) Shading decreases 
plant carbon preferential allocation towards the most beneficial 
mycorrhizal mutualist. New Phytol 205:361–368

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

440 Mycorrhiza (2021) 31:431–440


	Carbon for nutrient exchange between Lycopodiella inundata and Mucoromycotina fine root endophytes is unresponsive to high atmospheric CO2
	Abstract
	Introduction
	Methods
	Plant material and growth conditions
	Cytological analyses
	Plant harvest and sample analyses
	Statistics

	Results
	Molecular identification of fungal symbionts
	Cytology of fungal colonisation in plants
	C transfer from L. inundata to MFRE symbionts
	Fungus-to-lycophyte 33P and 15 N transfer

	Discussion
	Acknowledgements 
	References


