Skip to main content
Log in

Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Salt stress is a major abiotic stress restricting plant growth and reproductive yield. Salicylic acid (SA) and arbuscular mycorrhizal (AM) symbioses play key roles in eliminating adverse effects of salt stress by modulating ion homeostasis and carbohydrate metabolism in crop plants. Sugars synthesized via carbohydrate metabolism act as osmotic adjustors and signaling molecules in activation of various defense responses against salt stress. The present study investigated the role of SA (0.5 mM) seed priming in establishment of AM symbiosis with Rhizoglomus intraradices and the impact on growth, ion-homeostasis, nutrient uptake, and sugar metabolism in Cicer arietinum L. (chickpea) genotypes under salt stress. Salinity had a negative correlation with plant growth and AM symbiosis in both genotypes with more negative effects in relatively salt-sensitive genotype than tolerant. SA enhanced the percent root colonization by significantly increasing the number of arbuscules and vesicles under salt stress. AM symbiosis was more effective in improving root biomass, root to shoot ratio, and nutrient acquisition than SA, while SA was more effective in maintaining ion equilibrium and modulating carbohydrate metabolism and reproductive yield when compared with AM inoculation. SA priming directed the utilization of total soluble sugars (TSS) towards reproductive attributes more efficiently than did AM inoculation by activating TSS metabolic consumption. In AM plants, TSS concentrations were more directed towards sink demand by the fungus itself rather than developing reproductive structures. SA priming further increased sugar export to roots of AM plants, thus favored AM symbiosis. Hence, SA seed priming-induced improvement in AM symbiosis can be a promising strategy in achieving sustainable production of chickpea genotypes under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aftab T, Masroor M, Khan A, Idrees M, Naeem M (2010) Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J Crop Sci Biotech 13(3):183–188

    Article  Google Scholar 

  • Aliasgharzadeh N, Rastin SN, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11(3):119–122

    Article  CAS  Google Scholar 

  • Allen SF, Grimshaw HF, Rowl AB (1984) Chemical analysis. In: Moor PD, Chapman SB (eds) Methods in plant ecolgy. Blackwell, Oxford, pp 185–344

    Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10(2):51–54

    Article  CAS  Google Scholar 

  • Ansari A, Razmjoo J, Karimmojeni H (2016) Mycorrhizal colonization and seed treatment with salicylic acid to improve physiological traits and tolerance of flaxseed (Linum usitatissimum L.) plants grown under drought stress. Acta Physiol Plant 38(2):34

    Article  CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164(6):685–694

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Bacerra A, Norberto B, Cofre N, Florencia S, Cabello M (2014) Arbuscular mycorrhizal fungi in saline soils: vertical distribution at different soil depth. Braz J Microbiol 45(2):585–594

    Article  Google Scholar 

  • Baier MC, Keck M, Godde V, Niehaus K, Kuster H, Hohnjec N (2010) Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiol 152(2):1000–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynth Res 79(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Bernfield P (1955) In: Colowick S, Kaplan NO (eds) Methods of enzymology, Academic Press New York 1:149

  • Blee KA, Anderson AJ (2002) Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Mol Biol 50(2):197–211

    Article  CAS  PubMed  Google Scholar 

  • Blilou I, Bueno P, Ocampo JA, Garcia-Garrido JM (2000) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104(6):722–725

    Article  CAS  Google Scholar 

  • Bohra A, Jha UC, Singh B, Soren KL, Singh IP, Chaturvedi SK, Nadarajan N, Barh D (2013) Omics approaches in pulses. In: Barh D (ed) Omics applications in crop science. CRC Press, Taylor & Francis Group, New York, pp 101–138

    Chapter  Google Scholar 

  • Bonanomi A, Wiemken A, Boller T, Salzer P (2001) Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol 3:194–200

    Article  CAS  Google Scholar 

  • Borghesi E, Ferrante A, Gordillo B, Rodriguez-Pulido FJ, Cocetta G, Trivellini A, Mensuali-Sodi A, Malorgio F, Heredia FJ (2016) Comparative physiology during ripening in tomato rich-anthocyanins fruits. Plant Growth Regul 80(2):207–214

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cekic FO, Unyayar S, Ortas I (2012) Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turk J Bot 36(1):63–72

    CAS  Google Scholar 

  • Chapman HD, Pratt PF (1961) Ammonium vandate-molybdate method for determination of phosphorus. In: Methods of analysis for soils, plants and water. University of California, Los Angeles 60-61:150–179

  • Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229

    Article  CAS  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145(4):1714–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin JD, Avis PG, Wilbur RB (2003) The role of phosphorus availability in the response of soil nitrogen cycling, understory vegetation and arbuscular mycorrhizal inoculum potential to elevated nitrogen inputs. Water Air Soil Pollut (1–4):141–162

  • Cramer GR (2002) Sodium calcium interactions under salinity stress. In: Lachli A, Liittge U (eds) Salinity: Environment-plants-molecules. Kluwer, Dordrecht, pp 205–527

  • DAC 2010 Directorate of Economics and Statistics, DAC, Govt. of India

  • Daneshmand F, Arvin MJ, Kalantari KM (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32(1):91–101

    Article  CAS  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123(9):1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1–9

    Article  CAS  Google Scholar 

  • Dkhil BB, Denden M (2012) Effect of salt stress on growth, anthocyanins, membrane permeability and chlorophyll fluorescence of okra (Abelmoschus esculentus L.) seedlings. Am J Plant Phys 7:174–183

    Article  CAS  Google Scholar 

  • Doidy J, Grace E, Kuhn C, Simon-Plas F, Casieri L, Wipf D (2012) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17(7):413–422

    Article  CAS  PubMed  Google Scholar 

  • Edreva A, Gurel A, Gesheva E, Hakerlerler H (2002) Reddening of cotton (Gossypium hirsutum L.) leaves. Biol Plant 45(2):303–306

    Article  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782

    Article  CAS  PubMed  Google Scholar 

  • FAO (2008) FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush/

  • FAOSTAT (2015) http://faostat3.fao.org/ Statistics Division, Ministry of Agriculture, Govt. of India, New Delhi

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41(2):281–284

    Article  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37(7):604–612

    Article  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53(373):1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30(3):581–599

    Article  CAS  Google Scholar 

  • Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25(3):165–180

    Article  PubMed  Google Scholar 

  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189(3):329–339

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gupta AK, Singh J, Kaur N, Singh R (1993) Effect of polyethylene glycol induced-water stress on germination and reserve carbohydrates metabolism in chickpea cultivars differing in tolerance to water deficit. Plant Physiol Biochem 31:369–378

    CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hammer E, Nasr H, Pallon J, Olsson P, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129

    Article  CAS  PubMed  Google Scholar 

  • Hao JH, Dong CJ, Zhang ZG, Wang XL, Shang QM (2012) Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis. Plant Sci 187:69–82

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643–654

    Article  CAS  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242

    Article  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68(1):14–25

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Alyemeni MN, Ahmad A (2012) Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environ 58(9):417–423

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Dordrecht, pp 1–14

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10(4):175–183

    Article  CAS  Google Scholar 

  • Hiscox JT, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334

    Article  CAS  Google Scholar 

  • Huber SC (1983) Role of sucrose-phosphate synthase in partitioning of carbon in leaves. Plant Physiol 71(4):818–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IAB (2000) Indian agriculture in brief, 27th edn. Agriculture Statistics Division, Ministry of Agriculture, Govt. of India, New Delhi

    Google Scholar 

  • Irigoyen JJ, Einerich DW, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84(1):55–60

    Article  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55(1):45–53

    Article  PubMed  Google Scholar 

  • Jarstfer AG, Farmer P, Sylvia DM (1998) Tissue magnesium and calcium affect arbuscular mycorrhizal development and fungal reproduction. Mycorrhiza 7:237–242

    Article  CAS  PubMed  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64(8):2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Reg 76(1):25–40

    Article  CAS  Google Scholar 

  • Jones MGK, Outlaw WH, Lowry OH (1977) Enzymic assay of 10−7 to 10−14 moles of sucrose in plant tissues. Plant Physiol 60:379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Plant acclimation to environmental stress. Springer New York, pp 359–401

  • Kennedy BF, De Filippis LF (1999) Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. J Plant Physiol 155(6):746–754

    Article  CAS  Google Scholar 

  • Kerkeb L, Donaire JP, Venema K, Rodriguez-Rosales MP (2001) Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli. Physiol Plant 113(2):217–224

    Article  CAS  PubMed  Google Scholar 

  • Khan W, Prithiviraj B, Smith D (2003) Photosynthetic response of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  CAS  PubMed  Google Scholar 

  • Kormanik PP, McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenk NC (ed) Methods and principles of mycorrhizal research. APS Press, Minneapolis

    Google Scholar 

  • Krishnan HB, Blanchette JT, Okita TW (1985) Wheat invertases characterization of cell wall-bound and soluble forms. Plant Physiol 78(2):241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaveni S, Balasubramanian T, Sadasivam S (1984) Sugar distribution in sweet stalk sorghum. Food Chem 15(3):229–232

    Article  CAS  Google Scholar 

  • Lange H, Shropshire W, Mohr H (1971) An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol 47(5):649–655

    Article  PubMed  PubMed Central  Google Scholar 

  • Leport L, Turner NC, Dauies SL, Siddique KHM (2006) Variation in pod production and abortion among chickpea cultivars under terminal drought. Eur J Agron 24(3):236–246

    Article  Google Scholar 

  • Li J, Li XD, Zhang Y, Zheng ZD, Qu ZY, Liu M, Zhu SH, Liu S, Wang M, Qu L (2013) Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem 136(3):1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Li LF, Li T, Zhang Y, Zhao ZW (2010) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Eco 71(3):418–427

    Article  CAS  Google Scholar 

  • Liang Y, Zhang W, Chen Q, Ding R (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53(1):29–37

    Article  CAS  Google Scholar 

  • Martinez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37(2):209–217

    Article  CAS  PubMed  Google Scholar 

  • McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Anal Chem 22(9):1156–1158

    Article  CAS  Google Scholar 

  • Medina JH, Gagnon H, Piche Y, Ocampo JA, Garci JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164(6):993–998

    Article  CAS  Google Scholar 

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na and NH4. Short test methods used in Soil Testing Division, Department of Agriculture, Raleigh, North Carolina

  • Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wei C, Zhang X (2016) Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci 7:1–15

    Article  Google Scholar 

  • Morell M, Copeland L (1985) Sucrose synthase of soybean nodules. Plant Physiol 78(1):149–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mustafa Z, Pervez MA, Ayyub CM, Matloob A, Khaliq A, Hussain S, Ihsan MZ, Butt M (2014) Morpho-physiological characterization of chilli genotypes under NaCl salinity. Soil Environ 33(2):133–141

    Google Scholar 

  • Muthulakshmi S, Lingakumar K (2017) Role of salicylic acid (SA) in plants—a review. Int J Act Res 3(3):33–37

    Google Scholar 

  • Najafian S, Khoshkhui M, Tavallali V, Saharkhiz MJ (2009) Effect of salicylic acid and salinity in thyme (Thymus vulgaris L.): investigation on changes in gas exchange, water relations and membrane stabilization and biomass accumulation. Aust J Basic Appl Sci 3:2620–2626

    CAS  Google Scholar 

  • Nelson DW, Sommers LE (1972) A simple digestion procedure for estimation of total nitrogen in soil and sediments. J Environ Qual 1:423–425

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis, Agron. No. 9, part 2—chemical and microbiological properties, 2nd edn. Am Soc Agron, Madison, pp 403430

  • Ooto Y (1975) Short-day flowering of Lamma gibba G3 induced by salicylic acid. Plant Cell Physiol 16:1131–1135

    Article  Google Scholar 

  • Palmer IA, Shang Z, Fu ZQ (2017) Salicylic acid-mediated plant defense: present developments, missing links, and future outlook. Front Biol 12(4):258–270

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54(3):89–99

    Article  CAS  Google Scholar 

  • Peng J, Li Y, Shi P, Chen X, Lin H, Zhao B (2011) The differential behavior of arbuscular mycorrhizal fungi in interaction with Astragalus sinicus L. under salt stress. Mycorrhiza 21(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Peng J, Liu J, Zhang L, Luo J, Dong H, Ma Y, Zhao X, Chen B, Sui N, Zhou Z, Meng Y (2016) Effects of soil salinity on sucrose metabolism in cotton leaves. PLoS One 11(5):1–19

    CAS  Google Scholar 

  • Pieterse AH, Muller LJ (1977) Induction of flowering in Lemna gibba G3 under short-day conditions. Plant Cell Physiol 18(1):45–53

    CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26(7):673–684

    Article  CAS  PubMed  Google Scholar 

  • Pushpavalli R, Zaman-Allah M, Turner NC, Baddam R, Rao MV, Vadez V (2015) Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Funct Plant Biol 42(2):162–174

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141(3):910–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin I, Ehmann A, Melander WR, Meeuse BJ (1987) Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237:1601–1603

    Article  CAS  PubMed  Google Scholar 

  • Richard LA (1954) Diagnosis and improvement of saline and alkali soils, United states Department of Agriculture, Soil and Water Conservation Research Branch, Agricultural Research Service, Agriculture Handbook No. 60, US Government Printing Office, Washington 25, DC. Available at http://www.ars.usda.gov/sp2UserFiles/Place/20360500/hb60_pdf/hb60complete.pdf

  • Rodas-Junco BA, Cab-Guillen Y, Munoz-Sanchez JA, Vazquez-Flota F, Monforte-Gonzalez M, Hernandez-Sotomayor ST (2013) Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures. Plant Sig Behav 8(10):26752

    Article  CAS  Google Scholar 

  • Rui-hong Y, Run-jin L, Cheng-lian L, Yong-zhang W, Pei-huan L, Yong-bing Y (2009) Effects of arbuscular mycorrhizal fungi and salicylic acid on salt tolerance of strawberry (Fragaria ananassa Duch) plants. Sci Agric Sin 42:1590–1594

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10(3):137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam S, Manickam A (1992) Biochemical methods for agricultural sciences. Wiley Eastern Ltd, New Delhi

    Google Scholar 

  • Sahu BB, Shaw BP (2009) Salt-inducible isoform of plasma membrane H+-ATPase gene in rice remains constitutively expressed in natural halophyte, Suaeda maritima. J Plant Physiol 166(10):1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27(7):639–657

    Article  CAS  PubMed  Google Scholar 

  • Schrader S, Sauter JJ (2002) Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus×canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. J Plant Physiol 159(8):833–843

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    Article  CAS  PubMed  Google Scholar 

  • Shamshiri MH, Hasani MR (2015) Synergistic accumulative effects between exogenous salicylic acid and arbuscular mycorrhizal fungus in pistachio (Pistacia Vera cv. Abareqi) seedlings under drought stress. Int J Hortic Sci Technol 2(2):151–160

    CAS  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    Article  CAS  PubMed  Google Scholar 

  • Sieverding E, Silva GA, Berndt R, Oehl F (2014) Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon 129(2):373–386

    Article  Google Scholar 

  • Singh PK, Gautam S (2013) Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol Plant 35(8):2345–2353

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spyropoulos CG (1982) Control of sucrose metabolism in polyethylene glycol-stressed carob (Ceratonia siliqua L.) young seedlings. J Exp Bot 33:1210–1219

    Article  CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49(1):77–83

    CAS  Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Tarchevsky IA, Yakovleva VG, Egorova AM (2010) Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves. Biochem Mosc 75(5):590–597

    Article  CAS  Google Scholar 

  • Tavasolee A, Aliasgharzad N, Salehi GR, Mardi M, Asgharzadeh A, Akbarivala S (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on fungal occupancy in chickpea root and nodule determined by real-time PCR. Curr Microbiol 63(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Tejera NA, Soussi M, Lluch C (2006) Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ Exp Bot 58(1):17–24

    Article  CAS  Google Scholar 

  • Trivellini A, Gordillo B, Rodriguez-Pulido FJ, Borghesi E, Ferrante A, Vernieri P, Quijada-Morin N, Gonzalez-Miret ML, Heredia FJ (2014) Effect of salt stress in the regulation of anthocyanins and color of Hibiscus flowers by digital image analysis. J Agric Food Chem 62(29):6966–6974

    Article  CAS  PubMed  Google Scholar 

  • Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67(1):2–9

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Methods in enzymology, Elsevier 428:419–438

  • Van den Ende W, Michiels A, Roy KL, Van Laere A (2002) Cloning of a vacuolar Invertase from Belgian endive leaves (Cichorium intybus). Physiol Plantarum 115:504–512

    Article  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and of organic soil constituents. Soil Sci 63:251–263

    Article  CAS  Google Scholar 

  • Wu D, Shen Q, Cai S, Chen ZH, Dai F, Zhang G (2013) Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol 54(12):1976–1988

    Article  CAS  PubMed  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18(5):241–249

    Article  PubMed  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95(1):343–348

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University (PAU), Ludhiana, Punjab; Pulse laboratory, Department of Microbiology, (Indian Agricultural Institute (IARI), New Delhi; and The Energy and Resource Institute (TERI), New Delhi, for providing the biological research material.

Funding

We are thankful to the University Grants Commission and Department of Biotechnology, Government of India, for providing financial support in undertaking this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

ESM 2

Effect of salicylic acid (SA) and/or arbuscular mycorrhizal (AM) inoculation on A magnesium concentrations (mg g-1FW) in leaves, B magnesium concentrations (mg g-1FW) in roots and C phosphorous concentrations (mg g-1FW) in roots of Cicer arietinum L. genotypes (salt tolerant–PBG 5 and salt sensitive–BG 256) under different concentrations of salinity at 90 DAS. Values are means of 6 replicates±standard error (SE). Points topped by the same letter do not differ significantly at p ≤ 0.05 as assessed by Duncan’s multiple range test (DMRT). –SA–AM: SA unprimed non AM plants, +SA–AM: SA primed non AM plants, –SA+AM: SA unprimed AM plants, +SA+AM: SA primed AM plants (PNG 1855 kb)

High resolution image (TIF 948 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 12 kb)

ESM 5

Effect of salicylic acid (SA) and/or arbuscular mycorrhizal (AM) fungi on A anthocyanin concentrations (mg g-1FW) and B phenylalanine ammonia lyase enzyme activity in (μg min-1 mg-1 protein) roots of Cicer arietinum L. genotypes (salt tolerant–PBG 5 and salt sensitive–BG 256) under different concentrations of salinity at 90 DAS. Values are means of 6 replicates±standard error (SE). Points topped by the same letter do not differ significantly at p ≤ 0.05 as assessed by Duncan’s multiple range test (DMRT). –SA–AM: SA unprimed non AM plants, +SA–AM: SA primed non AM plants, –SA+AM: SA unprimed AM plants, +SA+AM: SA primed AM plants (PNG 1508 kb)

High resolution image (TIF 758 kb)

ESM 6

Effect of salicylic acid (SA) and/or arbuscular mycorrhizal (AM) fungi on A relative membrane permeability (%) B sodium ion concentrations (mg g-1DW) C K+/Na+ ratio and D Ca2+/Na+ in roots of Cicer arietinum L. genotypes (salt tolerant–PBG 5 and salt sensitive–BG 256) under different concentrations of salinity at 90 DAS. Values are means of 6 replicates±standard error (SE). Points topped by the same letter do not differ significantly at p ≤ 0.05 as assessed by Duncan’s multiple range test (DMRT). –SA–AM: SA unprimed non AM plants, +SA–AM: SA primed non AM plants, –SA+AM: SA unprimed AM plants, +SA+AM: SA primed AM plants (PNG 2560 kb)

High resolution image (TIF 1338 kb)

ESM 7

Effect of salicylic acid (SA) and/or arbuscular mycorrhizal (AM) fungi on A TSS concentrations (mg g-1FW) B Glucose concentrations (mg g-1FW) C Sucrose concentrations (mg g-1FW) and D Starch concentrations (mg g-1FW) in roots of Cicer arietinum L. genotypes (salt tolerant–PBG 5 and salt sensitive–BG 256) under different concentrations of salinity at 90 DAS. Values are means of 6 replicates±standard error (SE). Points topped by the same letter do not differ significantly at p ≤ 0.05 as assessed by Duncan’s multiple range test (DMRT). –SA–AM: SA unprimed non AM plants, +SA–AM: SA primed non AM plants, –SA+AM: SA unprimed AM plants, +SA+AM: SA primed AM plants (PNG 2467 kb)

High resolution image (TIF 1302 kb)

ESM 8

(DOCX 13 kb)

ESM 9

Effect of salicylic acid (SA) and/or arbuscular mycorrhizal (AM) fungi on A sucrose phosphate synthase (SPS) activity (μg sucrose produced min-1 mg-1protein) B sucrose synthase (SS) activity (μg UDPG produced min-1 mg-1protein) and C acid invertase (AI) activity (mg sucrose produced min-1 g-1FW) in roots of Cicer arietinum L. genotypes (salt tolerant–PBG 5 and salt sensitive–BG 256) under different concentrations of salinity at 90 DAS. Values are means of 6 replicates±standard error (SE). Points topped by the same letter do not differ significantly at p ≤ 0.05 as assessed by Duncan’s multiple range test (DMRT). –SA–AM: SA unprimed non AM plants, +SA–AM: SA primed non AM plants, –SA+AM: SA unprimed AM plants, +SA+AM: SA primed AM plants (PNG 1924 kb)

High resolution image (TIF 999 kb)

ESM 10

Effect of salicylic acid (SA and/or arbuscular mycorrhizal (AM) fungi on A α-amylase activity (mg maltose produced min-1 g-1FW) and B β-amylase activity (mg maltose produced min-1 g-1FW) in roots of Cicer arietinum L. genotypes (salt tolerant–PBG 5 and salt sensitive–BG 256) under different concentrations of salinity at 90 DAS. Values are means of 6 replicates±standard error (SE). Points topped by the same letter do not differ significantly at p ≤ 0.05 as assessed by Duncan’s multiple range test (DMRT). –SA–AM: SA unprimed non AM plants, +SA–AM: SA primed non AM plants, –SA+AM: SA unprimed AM plants, +SA+AM: SA primed AM plants (PNG 1440 kb)

High resolution image (TIF 734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, N., Bharti, A. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza 28, 727–746 (2018). https://doi.org/10.1007/s00572-018-0856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-018-0856-6

Keywords

Navigation