Skip to main content
Log in

Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Although strigolactones play a critical role as rhizospheric signaling molecules for the establishment of arbuscular mycorrhizal (AM) symbiosis and for seed germination of parasitic weeds, scarce data are available about interactions between AM fungi and strigolactones. In the present work, we present background data on strigolactones from studies on their seed germination activity on the parasitic weeds Orobanche and Striga, the importance of nitrogen and phosphorus for this seed germination activity, and what this could mean for AM fungi. We also present results on the susceptibility of plants to AM fungi and the possible involvement of strigolactones in this AM susceptibility and discuss the role of strigolactones for the formation and the regulation of the AM symbiosis as well as the possible implication of these compounds as plant signals in other soil-borne plant–microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu Irmaileh BE (1994) Nitrogen reduces branched broomrape (Orobanche ramosa) seed germination. Weed Sci 42:57–60

    Google Scholar 

  • Akiyama K (2007) Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Biosci Biotechnol Biochem 71:1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol 111:435–446

    Article  Google Scholar 

  • Azcón R, Gomez-Ortega M, Barea JM (1982) Comparative effects of foliar- or soil-applied nitrate on vesicular–arbuscular mycorrhizal infection in maize. New Phytol 92:553–559

    Article  Google Scholar 

  • Bååth E, Spokes J (1989) The effect of added nitrogen and phosphorus on mycorrhizal growth response and infection in Allium schoenoprasum. Can J Bot 67:3227–3232

    Article  Google Scholar 

  • Berner DK, Williams OA (1998) Germination stimulation of Striga gesnerioides seeds by hosts and nonhosts. Plant Dis 82:1242–1247

    Article  Google Scholar 

  • Besserer A, Puech-Pàges V, Kiefer P, Gómez-Roldán V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247

    Article  CAS  Google Scholar 

  • Besserer A, Bécard G, Jauneau A, Roux C, Séjalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besserer A, Bécard G, Roux C, Séjalon-Delmas N (2009) Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signal Behav 4:75–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Roux C, López-Ráez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  CAS  PubMed  Google Scholar 

  • Buée M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698

    Article  PubMed  Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382

    Article  PubMed  Google Scholar 

  • Cechin I, Press MC (1993) Nitrogen relations of the sorghum-Striga hermonthica host–parasite association: germination, attachment and early growth. New Phytol 124:681–687

    Article  CAS  Google Scholar 

  • Chambers CA, Smith SE, Smith FA (1980) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol 85:47–62

    Article  CAS  Google Scholar 

  • Douds DD, Nagahashi G (2000) Signaling and recognition events prior to colonization of roots by arbuscular mycorrhiza fungi. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, St. Paul, USA, pp 127–140

  • Fernández-Aparicio M, Andolfi A, Evidente A, Pérez-de-Luque A, Rubiales D (2008) Fenugreek root exudates show species-specific stimulation of Orobanche seed germination. Weed Res 48:163–168

    Article  Google Scholar 

  • Fernández-Aparicio M, Flores F, Rubiales D (2009a) Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Ann Bot 103:423–431

    Article  Google Scholar 

  • Fernández-Aparicio M, Rispail N, Prats E, Morandi D, García-Garrido JM, Dumas-Gaudot E, Duc G, Rubiales D (2009b) Plant partially controls parasitic plant infection through the symbiotic pathways. Weeds Res (in press)

  • Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Silvia A, Avio L (1996) Analysis of factors involved in fungal recognition response to host-derived signals by arbuscular mychorrizal fungi. New Phytol 133:65–71

    Article  Google Scholar 

  • Goldwasser Y, Yoneyama K, Xie X, Yoneyama K (2008) Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul 55:21–28

    Article  CAS  Google Scholar 

  • Gómez-Roldán V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  Google Scholar 

  • Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720

    Article  CAS  Google Scholar 

  • Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi-parasite-host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza 13:277–281

    Article  PubMed  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium-legume symbiosis. Fungal Genet Biol 23:205–212

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Foy CL (1992) Nutrient effects on parasitism and germination of Egyptian broomrape (Orobanche aegyptiaca). Weed Technol 6:269–275

    CAS  Google Scholar 

  • Lendzemo VW (2004) The tripartite interaction between sorghum, Striga hermonthica, and arbuscular mycorrhizal fungi. Ph.D. thesis, Wageningen University, Wageningen, The Netherlands

  • Lendzemo VW, Kuyper TW (2001) Effects of arbuscular mycorrhizal fungi on damage by Striga hermonthica on two contrasting cultivars of sorghum, Sorghum bicolor. Agric Ecosyst Environ 87:29–35

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, van Ast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res 91:51–61

    Article  Google Scholar 

  • Lendzemo V, Kuyper TW, Matusova R, Bouwmeester HJ, Van Ast A (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2:58–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Lendzemo L, Kuyper TW, Urban A, Vegvari G, Puschenreiter M, Schickmann S, Langer I, Steinkellner S, Vierheilig H (2009a) The arbuscular mycorrhizal host status of plants can not be linked with the Striga seed-germination-activity of plant root exudates. J Plant Dis Protect 116:86–89

    Article  Google Scholar 

  • Lendzemo L, Kuyper TW, Vierheilig H (2009b) Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi. Mycorrhiza 19:287–294

    Article  CAS  Google Scholar 

  • Lerat S, Lapointe L, Gutjahr S, Piché Y, Vierheilig H (2003a) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157:589–595

    Article  Google Scholar 

  • Lerat S, Lapointe L, Piché Y, Vierheilig H (2003b) Variable carbon sink strength of different Glomus mosseae strains colonizing barley roots. Can J Bot 81:886–889

    Article  Google Scholar 

  • López-Ráez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W, Ruyter-Spira C, Verstappen F, Bouwmeester H (2008a) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 65:471–477

    Article  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008b) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Smith DL (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166

    Article  CAS  Google Scholar 

  • Mabrouk Y, Zourgui L, Sifi B, Delavault P, Simier P, Belhadj O (2007a) Some compatible Rhizobium leguminosarum strains in peas decrease infections when parasitised by Orobanche crenata. Weed Res 47:44–53

    Article  Google Scholar 

  • Mabrouk Y, Zourgui L, Sifi B, Belhadj O (2007b) The potential of Rhizobium strains for biological control of Orobanche crenata. Biologia 62:139–143

    Article  Google Scholar 

  • Mabrouk Y, Simier P, Arfaoui A, Sifi B, Delavault P, Zourgui L, Belhadj O (2007c) Induction of phenolic compounds in pea (Pisum sativum L.) inoculated by Rhizobium leguminosarum and infected with Orobanche crenata. J Phytopathol 155:728–734

    Article  Google Scholar 

  • Martinez C, Buée M, Jauneau A, Bécard G, Dargent R, Roux C (2001) Effects of a fraction from maize root exudates on haploid strains of Sporisorium reilianum f. sp. zeae. Plant Soil 236:145–153

    Article  CAS  Google Scholar 

  • Matusova R, van Mourik T, Bouwmeester HJ (2004) Changes in the sensitivity of parasitic weed seeds to germination stimulants. Seed Sci Res 14:335–344

    Article  CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morozov IV, Foy CL, Westwood JH (2000) Small broomrape (Orobanche minor) and Egyptian broomrape (Orobanche aegyptiaca) parasitization of red clover (Trifolium pratense). Weed Technol 14:312-320

    Article  Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular–arbuscular mycorrhiza. IV. In soil given additional phosphate. New Phytol 72:127–136

    Article  Google Scholar 

  • Mumera LM, Below FE (1993) Role of nitrogen in resistance to Striga parasitism of maize. Crop Sci 33:758–763

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds DD (1999) Rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi. Biotechnol Tech 13:893–897

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds DD (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104:1453–1464

    Article  Google Scholar 

  • Nagahashi G, Douds DD (2003) Action spectrum for the induction of hyphal branches of an arbuscular mycorrhizal fungus: exposure sites versus branching sites. Mycol Res 107:1075–1082

    Article  PubMed  Google Scholar 

  • Nagahashi G, Douds DD (2007) Separated components of root exudate and cytosol stimulate different morphologically identifiable types of branching responses by arbuscular mycorrhizal fungi. Mycol Res 111:487–492

    Article  PubMed  Google Scholar 

  • Nagahashi G, Douds DD, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its affect on root exudation. Mycorrhiza 6:403–408

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pinior A (1999) Wurzelexsudate mykorrhizierter Pflanzen und deren regulierender Einfluss auf arbuskuläre Mykorrhizapilze. Master thesis, Christian-Albrechts-Universität zu Kiel/Germany

  • Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891–897

    Google Scholar 

  • Raju PS, Osman MA, Soman P, Peacock JM (1990) Effects of N, P and K on Striga asiatica (L.) Kuntze seed germination and infestation of sorghum. Weed Res 30:139–144

    Article  Google Scholar 

  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester H (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh S K (2008) Adaptation à la pénétration racinaire de deux Ustilaginaceae parasites du maïs : Ustilago maydis et Sporisorium reilianum—analyse microscopique et transcriptomique. Ph.D. thesis, Université Toulouse/France

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Siqueira JO, Hubbell DH, Valle RR (1984) Effects of phosphorus on formation of the vesicular–arbuscular mycorrhizal symbiosis. Pesq Agrop Brasil 19:1465–1474

    Google Scholar 

  • Smith S, Read D (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Sparkling GP, Tinker PB (1978) Mycorrhizal infection in Pennine grassland. I. Levels of infection in the field. J Appl Ecol 15:943–950

    Article  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12:1290–1306

    Article  CAS  PubMed  Google Scholar 

  • Stribley DP, Tinker PB, Snellgrove RC (1980) Effects of vesicular–arbuscular mycorrhizal fungi on the relations of plant growth, internal phosphorus concentration and soil phosphate analyses. J Soil Sci 31:655–672

    Article  CAS  Google Scholar 

  • Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J, Verstappen FWA, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester HJ (2008) Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789–801

    Article  CAS  PubMed  Google Scholar 

  • Sylvia DM, Neal LH (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol 115:303–310

    Article  CAS  Google Scholar 

  • Tamasloukht M, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103:751–765

    Article  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H (2004a) Regulatory mechanisms during the plant–arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166–1176

    Article  CAS  Google Scholar 

  • Vierheilig H (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339–341

    Article  CAS  Google Scholar 

  • Vierheilig H, Bago B (2005) Host and non-host impact on the physiology of the symbiosis. In: Declerck S, Strullu S, Fortin A (eds) Root-organ cultures of mycorrhizal fungi. Springer, Heidelberg, pp 139–158

    Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey JA (eds) Flavonoids in cell function. Kluwer Academic, New York, pp 23–39

    Chapter  Google Scholar 

  • Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piché Y (1998) Flavonoids and arbuscular mycorrhizal fungi. In: Manthey J, Buslig B (eds) Flavonoids in the living system. Plenum, New York, pp 9–33

    Chapter  Google Scholar 

  • Vierheilig H, Garcia-Garrido JM, Wyss U, Piché Y (2000a) Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol Biochem 32:589–595

    Article  CAS  Google Scholar 

  • Vierheilig H, Maier W, Wyss U, Samson J, Strack D, Piché Y (2000b) Cyclohexenone derivative- and phosphate-levels in split-root systems and their role in the systemic suppression of mycorrhization in precolonized barley plants. J Plant Physiol 157:593–599

    Article  CAS  Google Scholar 

  • Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167–170

    Article  CAS  PubMed  Google Scholar 

  • Westwood JH (2000) Characterization of the OrobancheArabidopsis system for studying parasite–host interactions. Weed Sci 48:742–748

    Article  CAS  Google Scholar 

  • Yoneyama K, Takeuchi Y, Yokota T (2001) Production of clover broomrape seed germination stimulants by red clover root require nitrate but is inhibited by phosphate and ammonium. Physiol Plant 112:25–30

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007a) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007b) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    Article  CAS  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Vierheilig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Garrido, J.M., Lendzemo, V., Castellanos-Morales, V. et al. Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza 19, 449–459 (2009). https://doi.org/10.1007/s00572-009-0265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0265-y

Keywords

Navigation