Skip to main content
Log in

Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next?

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

This review commemorates and examines the significance of the work of Isobel Gallaud more than 100 years ago that first established the existence of distinct structural classes (Arum-type and Paris-type) within arbuscular mycorrhizal (AM) symbioses. We add new information from recent publications to the previous data last collated 10 years ago to consider whether any patterns have emerged on the basis of different fungal morphology within plant species or families. We discuss: (1) possible control exerted by the fungus over AM morphology; (2) apparent lack of plant phylogenetic relationships between the classes; (3) functions of the interfaces in different structural classes in relation to nutrient transfer in particular; and (4) the occurrence of plants with both of the major classes, and with intermediate AM structures, in different plant habitats. We also give suggestions for future research to help remove uncertainties about the functional and ecological significance of differences in AM morphology. Lastly, we urge retention of the terms Arum- and Paris-type, which are now well recognised by those who study AM symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas Y, Ducousso M, Abourouh M, Azcón R, Duponnois R (2006) Diversity of arbuscular mycorrhizal fungi in Tetraclinis articulata (Vahl) Masters woodlands in Morocco. Ann For Sci 63:285–291

    Article  Google Scholar 

  • Abbott LK (1982) Comparative anatomy of vesicular–arbuscular mycorrhizas formed on subterranean clover. Aust J Bot 30:485–499

    Article  Google Scholar 

  • Abbott LK, Robson AD (1978) Growth of subterranean clover in relation to the formation of endomycorrhizas by introduced and indigenous fungi in a field soil. New Phytol 81:575–585

    Article  Google Scholar 

  • Ahulu EM, Nakata M, Nonaka M (2005) Arum- and Paris-type arbuscular mycorrhizas in a mixed pine forest on sand dune soil in Niigata Prefecture, central Honshu, Japan. Mycorrhiza 15:129–136

    Article  Google Scholar 

  • Ahulu EM, Gollotte A, Gianinazzi-Pearson V, Nonaka M (2006) Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar AM fungal species. Mycorrhiza 17:37–49

    Article  Google Scholar 

  • Antoniolli ZI (1999) Arbuscular mycorrhizal community in a permanent pasture and development of species-specific primers for detection and quantification of two AM fungi. PhD, Soil and Water, The University of Adelaide, Australia

  • Armstrong L, Peterson RL (2002) The interface between the arbuscular mycorrhizal fungus Glomus intraradices and root cells of Panax quinquefolius: a Paris-type mycorrhizal association. Mycologia 94:587–595

    Article  PubMed  Google Scholar 

  • Asai T (1944) Über die Mykorrhizenbildung der leguminosen Pflanzen. Jpn J Bot 13:463–485

    Google Scholar 

  • Bago A, Cano C, Toussaint J, Smith S, Dickson S (2006) Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures. Mycorrhiza 16:429–436

    Article  PubMed  Google Scholar 

  • Barrett JT (1958) Synthesis of mycorrhiza with pure cultures of Rhizophagus. Phytopathology 48:391

    Google Scholar 

  • Baylis GTS, McNabb RFR, Morrison TM (1963) The mycorrhizal nodules of podocarps. Trans Br Mycol Soc 46:378–384

    Article  Google Scholar 

  • Bedini S, Maremmani A, Giovannetti M (2000) Paris-type mycorrhizas in Smilax aspera L. growing in a Mediterranean scherophyllous wood. Mycorrhiza 10:9–13

    Article  Google Scholar 

  • Bernard C (1904) Le champignon endophyte des orchidées. C r Acad Sci Paris Sci 138:828–830

    Google Scholar 

  • Böcher TW (1964) Morphology of the vegetative body of Metasequoia glyptostroboides. Dansk Bot Arkiv 24:1–70

    Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Bonfante-Fasolo P, Fontana A (1985) VAM fungi in Ginkgo biloba roots: their interactions at cellular level. Symbiosis 1:53–67

    Google Scholar 

  • Breuninger M, Einig W, Magel E, Cardoso E, Hampp R (2000) Mycorrhiza of Brazil pine (Araucaria angustifolia Bert. O. Ktze.). Plant Biol 2:4–10

    Article  Google Scholar 

  • Brundrett M (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Brundrett MC, Kendrick B (1988) The mycorrhizal status, root anatomy and phenology of plants in a sugar maple forest. Can J Bot 66:1153–1173

    Article  Google Scholar 

  • Brundrett M, Kendrick B (1990a) The roots and mycorrhizas of herbaceous woodland plants. I. Quantitative aspects of morphology. New Phytol 114:457–468

    Article  Google Scholar 

  • Brundrett M, Kendrick B (1990b) The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol 114:469–479

    Article  Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1985) A developmental study of the early stages in vesicular-arbuscular mycorrhiza development. Can J Bot 63:184–194

    Article  Google Scholar 

  • Brundrett M, Murase G, Kendrick B (1990) Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can J Bot 68:551–578

    Article  Google Scholar 

  • Carling DE, Brown MF (1982) Anatomy and physiology of vesicular–arbuscular and non-mycorrhizal roots. Phytopathology 72:1108–1114

    Google Scholar 

  • Cavagnaro TR, Smith FA, Lorimer MF, Haskard KA, Ayling SM, Smith SE (2001a) Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytol 149:105–113

    Article  Google Scholar 

  • Cavagnaro TR, Gao L-L, Smith FA, Smith SE (2001b) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469–475

    Article  Google Scholar 

  • Cavagnaro TR, Smith FA, Ayling SM, Smith SE (2003) Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytol 157:127–134

    Article  Google Scholar 

  • Cooper KM (1976) A field survey of mycorrhizas in New Zealand ferns. NZ J Bot 14:169–181

    Article  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York, USA

    Google Scholar 

  • Dangeard PA (1900) Le Rhizophagus populinus. Botaniste 7:285–287

    Google Scholar 

  • David R, Itzhak H, Ginsberg I, Gafni Y, Galili G, Kapulnik Y (1998) Suppression of tobacco basic chitinase gene expression in response to colonisation by the arbuscular mycorrhizal fungus Glomus intraradices. MPMI 11:489–497

    Article  CAS  PubMed  Google Scholar 

  • Demuth K, Forstreuter W, Weber HC (1991) Morphological differences in vesicular–arbuscular mycorrhizae of Gentianaceae produced by different endophytes. Flora 185:127–132

    Article  Google Scholar 

  • Dickson S (2004) The ArumParis continuum of mycorrhizal symbioses. New Phytol 163:187–200

    Article  Google Scholar 

  • Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9:205–213

    Article  Google Scholar 

  • Domínguez LS, Sérsic A (2004) The southernmost myco-heterotrophic plant, Arachnitis uniflora: root morphology and anatomy. Mycologia 96:1143–1151

    Article  PubMed  Google Scholar 

  • Endrigkeit A (1937) Beiträge zum ernährungsphysiologischen Problem der Mykorrhiza unter besonderer Berücksichtigung des Baues und der Funktion der Wurzel–und Pilzmembranen. Bot Arkiv 39:1–87

    Google Scholar 

  • Fisher JB, Jayachandran K (2002) Arbuscular mycorrhizal fungi enhance seedling growth in two endangered plant species from South Florida. Int J Plant Sci 163:559–566

    Article  Google Scholar 

  • Fisher JB, Jayachandran K (2005) Presence of arbuscular mycorrhizal fungi in South Florida native plants. Mycorrhiza 15:580–588

    Article  PubMed  Google Scholar 

  • Fitter AH, Moyersoen B (1996) Evolutionary trends in root-microbe symbioses. Philos Trans R Soc Lond B 351:1367–1375

    Article  Google Scholar 

  • Frank AB (1885a) Uber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäum durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145

    Google Scholar 

  • Frank AB (1885b) On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A.B. Frank’s classic paper of 1885). Mycorrhiza 15:267–275

    Article  Google Scholar 

  • Frank AB (1887) Ueber neue Mycorrhiza-formen. Ber Dtsch Bot Ges 5:395–409

    Google Scholar 

  • Frankland JC, Harrison AF (1985) Mycorrhizal infection of Betula pendula and Acer pseudoplatanus: relationships with seedling growth and soil factors. New Phytol 101:133–151

    Article  Google Scholar 

  • Gallaud I (1904) Études sur les mycorrhizes endotrophes. Rev Gén Bot, Bigot Frerès, Lille

  • Gallaud I (1905) Études sur les mycorrhizes endotrophes. Rev Gén Bot 17:5–48; 66–83, 123–135; 223–239; 313–325; 425–433; 479–500

    Google Scholar 

  • Gao L-L (2002) Control of arbuscular mycorrhizal colonisation: studies of a mycorrhiza-defective tomato mutant. PhD, Dept Soil and Water, The University of Adelaide, Australia

  • Gao L-L, Knogge W, Delp G, Smith FA, Smith SE (2004) Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. MPMI 17:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Gay PE, Grubb PJ, Hudson HJ (1982) Seasonal changes in the concentrations of nitrogen, phosphorus and potassium, and in the density of mycorrhiza, in biennial and matrix-forming perennial species of closed chalkland turf. J Ecol 70:571–593

    Article  CAS  Google Scholar 

  • Gerdemann JW (1965) Vesicular–arbuscular mycorrhizae formed on maize and tuliptree by Endogone fasciculata. Mycologia 57:562–575

    Article  Google Scholar 

  • Girard I (1985) Écologie des mycorrhizes: caractère mycorhizien des espèces végétales se forêts climaciques et reflexion sur la relation humus—mycorrhize. MSc, Départment de Science Forestière, France

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    Article  CAS  PubMed  Google Scholar 

  • Gray LE, Gerdemann JW (1967) Influence of vesicular–arbuscular mycorrhizas on the uptake of phosphorus-32 by Liriodendron tulipifera and Liquidambar styraciflua. Nature 49:106

    Article  Google Scholar 

  • Greny A (1973) Étude anatomo-morphologique des endomycorrhizes constitue par le Maïs, l’Avoine, le Blé, l’Orge et diverses Graminées prairiales et adventices. Mémoire presente au Conservatoire des Arts et Métiers pour obtenir le Diplome d’Ingenieur C.N.A.M

  • Groom P (1895) On Thismia aseroe Beccari and its mycorrhiza. Ann Bot 9:327–361

    Article  Google Scholar 

  • Gross E, Cordeiro L, Caetano FH (2003) Anatomical and ultrastructural aspects of root and mycorrhiza of Anadenanthera peregrina (L.) Speg. var. falcata (Benth.) Altschul (Leguminosae-Mimosoideae) Rev Bras Cienc Solo 26:515–523

    Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular–arbuscular mycorrhizal associations in roots of Medicago truncatula. MPMI 6:643–654

    Article  CAS  Google Scholar 

  • Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20

    Article  CAS  Google Scholar 

  • Hattingh MJ, Gray LE, Gerdemann JW (1973) Uptake and translocation of 32P-labeled phosphate to onion roots by endomycorrhizal fungi. Soil Sci 116:383–387

    Article  CAS  Google Scholar 

  • Hawley GL, Dames JF (2004) Mycorrhizal status of indigenous tree species in a forest biome of the Eastern Cape, South Africa. S Afr J Sci 100:633–637

    Google Scholar 

  • Hayman DS (1974) Plant growth responses to vesicular–arbuscular mycorrhiza. VI. Effect of light and temperature. New Phytol 73:71–80

    Article  Google Scholar 

  • Holley JD, Peterson RL (1979) Development of a vesicular–arbuscular mycorrhiza in bean roots. Can J Bot 57:1960–1978

    Article  Google Scholar 

  • Imhof S (1997) Root anatomy and mycotrophy of the achlorophyllous Voyria tenella Hooker (Gentianaceae). Bot Acta 110:298–305

    Article  Google Scholar 

  • Imhof S (1999a) Subterranean structures and mycorrhiza of the achlorophyllous Burmannia tenella Bentham (Burmanniaceae). Can J Bot 77:637–643

    Google Scholar 

  • Imhof S (1999b) Root morphology, anatomy and mycotrophy of the achlorophyllous Voyria aphylla (Jacq.) Pers. (Gentianaceae). Mycorrhiza 9:33–39

    Article  Google Scholar 

  • Imhof S (2003) A dorsiventral mycorrhizal root in the achlorophyllous Sciaphila polygyna (Triuridaceae). Mycorrhiza 13:327–332

    Article  PubMed  Google Scholar 

  • Imhof S (2006) Two distinct fungi colonize roots and rhizomes of the myco-heterotrophic Afrothismia gesnerioides (Burmanniaceae). Can J Bot 86:852–861

    Article  Google Scholar 

  • Imhof S, Weber HC (1997) Root anatomy and mycotrophy (AM) of the achlorophyllous Voyria truncata (Standley) Standley and Steyermark (Gentianaceae). Bot Acta 110:127–134

    Article  Google Scholar 

  • Imhof S, Weber HC (2000) Root structures and mycorrhiza of the achlorophyllous Voyria obconica Progel (Gentianaceae). Symbiosis 29:201–211

    Google Scholar 

  • Jacquelinet-Jeanmougin S, Gianinazzi-Pearson V (1983) Endomycorrhizas in the Gentianaceae. I. The fungi associated with Gentiana lutea L. New Phytol 95:663–666

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol 120:509–516

    Article  CAS  Google Scholar 

  • Janse JM (1897) Les endophytes radicaux de quelques plantes Javanaises. Ann Jard Bot Buitenzorg 14:53–201

    Google Scholar 

  • Johnston A (1949) Vesicular–arbuscular mycorrhiza in sea island cotton and other tropical plants. Trop Agric 26:118–121

    Google Scholar 

  • Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 101:6285–6290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerp H, Trewin NH, Haas H (2004) New gametophytes from the Early Devonian Rhynie chert. Trans R Soc Edinb Earth Sci 94:411–428

    Article  Google Scholar 

  • Kessler KJ (1966) Growth and development of mycorrhizae of sugar maple (Acer saccharum Marsh.). Can J Bot 44:1413–1425

    Article  Google Scholar 

  • Kinden DA, Brown MF (1975) Electron microscopy of vesicular–arbuscular mycorrhizae of yellow poplar. I. Characterization of endophytic structures by scanning electron stereoscopy. Can J Microbiol 21:989–993

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163

    Article  PubMed  Google Scholar 

  • Kubota M, McGonigle TP, Hyakumachi M (2005) Co-occurrence of Arum- and Paris-type morphologies of arbuscular mycorrhizae in cucumber and tomato. Mycorrhiza 15:73–77

    Article  CAS  PubMed  Google Scholar 

  • Kühn K-D, Weber HC (1986) Vesicular arbuscular mycorrhiza in Gentiana asclepiadea L. (Gentianaceae) on natural habitats. Angew Bot 60:427–439

    Google Scholar 

  • Lambais MR, Mehdy MC (1996) Soybean roots infected by Glomus intraradices strains differing in infectivity exhibit differential chitinase and -1,3-glucanase expression. New Phytol 134:531–538

    Article  CAS  Google Scholar 

  • Laycock DH (1945) Preliminary investigations into the function of the endotrophic mycorrhiza of Theobroma cacao L. Trop Agric 22:77–80

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Louis I (1990) A mycorrhizal survey of plant species colonizing coastal reclaimed land in Singapore. Mycologia 82:772–778

    Article  Google Scholar 

  • Lovera M, Cuenca G (1996) Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6:111–118

    Article  Google Scholar 

  • Maremmani A, Bedini S, Matoševic I, Tomei PE, Giovannetti M (2003) Type of mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza 13:33–40

    Article  PubMed  Google Scholar 

  • McGee PA (1985) Lack of spread of endomycorrhizas of Centaurium (Gentianaceae). New Phytol 101:451–458

    Article  Google Scholar 

  • McGee PA (1986) Mycorrhizal associations of plant species in a semiarid community. Aust J Bot 34:585–593

    Article  Google Scholar 

  • McGee PA (1990) Survival and growth of seedlings of coachwood (Ceratopetalum apetalum): effects of shade, mycorrhizas and a companion plant. Aust J Bot 38:583–592

    Article  Google Scholar 

  • McGee PA, Furby JH (1992) Formation and structure of mycorrhizas of seedlings of coachwood (Ceratopetalum apetalum). Aust J Bot 40:291–304

    Article  Google Scholar 

  • McGee PA, Bullock S, Summerell BA (1999) Structure of mycorrhizae of the Wollemi pine (Wollemia nobilis) and related Araucariaceae. Aust J Bot 47:85–95

    Article  Google Scholar 

  • McLennan EI (1958) Thismia rodwayi F Muell. and its endophyte. Aust J Bot 6:25–37

    Article  CAS  Google Scholar 

  • McLuckie J, Burges A (1932) Mycotrophism in the Rutaceae. I. The mycorrhiza of Eriostemon Crowei F.v.M. Proc Linn Soc N S W 57:291–312

    Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular–arbuscular mycorrhiza. IV. In soil given additional phosphate. New Phytol 72:127–136

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Arbuscular mycorrhizas in cycads of southern India. Mycorrhiza 12:213–217

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar T, Sha LQ, Yang XD, Cao M, Tang JW, Zheng Z (2003) Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza 13:289–297

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar T, Senthilkumar S, Rajangam M, Udaiyan K (2006) Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17:11–24

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah P (1980) Species of Endogonaceae and mycorrhizal association of Elaeis guineensis and Theobroma cacao. In: Mikola P (ed) Tropical mycorrhiza. Clarendon, Oxford, pp 233–237

    Google Scholar 

  • Nicolson TH (1959) Mycorrhiza in the Graminae I. Vesicular–arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438

    Article  Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA (2001) Arbuscular mycorrhizal associations in the southern Simpson Desert. Aust J Bot 49:493–499

    Article  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Peterson RL, Howarth MJ, Whittier DP (1981) Interactions between a fungal endophyte and gametophyte cells in Psilotum nudum. Can J Bot 59:711–720

    Article  Google Scholar 

  • Petri L (1903) Ricerche sul signifacto morfologica del prosporoidi (sporangiolo di Janse) nelle micorrize endotrofiche. Nuovo G Bot Ital 10:541

    Google Scholar 

  • Peyronel B (1923) Fructification de l’endophyte a arbuscules et a vesicules des mycorhizes endotrophes. Bull Soc Mycol 39:119–126

    Google Scholar 

  • Peyronel B (1924) Specie di “Endogone” produttrici di micorize endotrofiche. Boll Stan Patol Veg Roma 5:73–75

    Google Scholar 

  • Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714

    Article  Google Scholar 

  • Powell CL (1975) Plant growth responses to vesicular–arbuscular mycorrhiza. VIII. Uptake of P by onion and clover infected with different Endogone spore types in 32P labelled soil. New Phytol 75:563–566

    Article  Google Scholar 

  • Rayner MC (1927) Mycorrhiza. An account of non-pathogenic infection by fungi in vascular plants and bryophytes. New Phytol Reprint No 15. Wheldon & Wesley Ltd, London

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc B 355:815–830

    Article  CAS  Google Scholar 

  • Redhead JF (1968) Mycorrhizal associations in some Nigerian forest trees. Trans Br Mycol Soc 51:377–387

    Article  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defence genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. MPMI 12:976–984

    Article  CAS  Google Scholar 

  • Ruotsalainen AL, Aikio S (2004) Mycorrhizal inoculum and performance of nonmycorrhizal Carex bigelowii and mycorrhizal Trientalis europaea. Can J Bot 82:443–449

    Article  Google Scholar 

  • Saif SR (1977) The influence of stage of host development on vesicular–arbuscular mycorrhizae and endogonaceous spore population in field-grown vegetable crops. I. Summer-grown crops. New Phytol 79:341–348

    Article  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Albertó E, Menéndez AB (2004) Presence of different arbuscular mycorrhizal infection patterns in roots of Lotus glaber plants growing in the Salado River basin. Mycorrhiza 14:139–142

    Article  PubMed  Google Scholar 

  • Schüler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schwartz EJ (1912) Observations on Asarum europaeum mycorrhiza. Ann Bot 26:769–776

    Article  Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Shi ZY, Chen YL, Feng G, Liu RJ, Christie P, Li XL (2006) Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan island, China. Mycorrhiza 16:81–87

    Article  CAS  PubMed  Google Scholar 

  • Shibata K (1902) Cytologische studien uber die endotrophen mycorrhizen. Jahrb Wiss Bot 37:643–684

    Google Scholar 

  • Smith SE, Dickson S (1991) Quantification of active vesicular–arbuscular mycorrhizal infection using image analysis and other techniques. Aust J Plant Physiol 18:637–648

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, Read DJ (2007) Mycorrhizal symbiosis, 3rd edn. Elsevier (in press)

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38

    Article  CAS  Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in (vesicular)–arbuscular mycorrhizal symbiosis. New Phytol 137:373–388

    Article  Google Scholar 

  • Smith HF, O’Connor PJ, Smith SE, Smith FA (1997) (Vesicular) ± arbuscular mycorrhizas of durian and other plants of forest gardens in W. Kalimantan, Indonesia. In: Schulte A, Ruhiyat D (eds) Forest soils in the humid tropics: characteristics, ecology and management. Springer, Berlin Heidelberg New York, pp 192–198

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Stelz T (1968) Mycorrhizes et vegetation des pelouses calcaires. Faculté des Sciences de l’Université de Rouen, France

  • Stevens PF (2004) Angiosperm phylogeny website: http://www.mobot.org/MOBOT/research/AP/ (Cited May 2004)

  • Stockey RA, Rothwell GW, Addy HD, Currah RS (2001) Mycorrhizal association of the extinct conifer Metasequoia milleri. Mycol Res 105:202–205

    Article  Google Scholar 

  • Strullu DG, Gourret JP, Garrec JP, Fourcy A (1981) Ultrastructure and electron-probe microanalysis of the metachromatic vacuolar granules occurring in Taxus mycorrhizas. New Phytol 87:537–545

    Article  CAS  Google Scholar 

  • Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005) Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia 97:269–285

    Article  CAS  PubMed  Google Scholar 

  • Tiemann C, Demuth K, Weber HC (1994a) Zur VA-Mycorrhiza von Gelsemium rankinii und G. sempervirens (Loganiaceae). Beit Biol Pflanz 68:311–321

    Google Scholar 

  • Tiemann C, Demuth K, Weber HC (1994b) Zur Symbiose von Cynanchum vincetoxicum (L) PERS., Asclepias curassavica L. and Ceropegia woodii SCHL. (Asclepiadaceae) mit mycorrhiza-pilzen (VAM). Flora 189:1–6

    Article  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, pp 5–25

    Google Scholar 

  • Trappe JM (2005) A.B. Frank and mycorrhizae: the challenge to evolutionary and ecologic theory. Mycorrhiza 15:277–281

    Article  PubMed  Google Scholar 

  • Untch, Weber HC (1995) Strukturen der Mycorrhiza (AM) bei Ceropegia dichotoma Haw., Ceropegia fusca Bolle und Periploca laevigata Ait. (Asclepiadaceae). Beit Biol Pflanz 69:129–140

    Google Scholar 

  • Van Aarle IM, Cavagnaro TR, Smith SE, Smith FA, Dickson S (2005) Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization. New Phytol 166:611–618

    Article  PubMed  Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wastie RL (1965) The occurrence of an Endogone type of endotrophic mycorrhiza in Hevea brasiliensis. Trans Br Mycol Soc 48:167–178

    Article  Google Scholar 

  • Weber HC, Krämer M (1994) VA ± Mycorrhiza bei Menyanthaceae. Beit Biol Pflanz 68:351–362

    Google Scholar 

  • Weber HC, Klahr A, Marron-Heimbuch M (1995) Anatomical structures of the VA mycorrhiza in the Apocynaceae (Gentianales). Bot Acta 108:525–534

    Article  Google Scholar 

  • Whitbread F, McGonigle TP, Peterson RL (1996) Vesicular–arbuscular mycorrhizal associations of American Ginseng (Panax quinquefolius) in commercial production. Can J Bot 74:1104–1112

    Article  Google Scholar 

  • Widden P (1996) The morphology of vesicular–arbuscular mycorrhizae in Clintonia borealis and Medeola virginiana. Can J Bot 74:679–685

    Article  Google Scholar 

  • Wu BY, Isobe K, Ishii R (2004) Arbuscular mycorrhizal colonization of the dominant plant species in primary successional volcanic deserts on the Southeast slope of Mount Fuji. Mycorrhiza 14:391–395

    Article  PubMed  Google Scholar 

  • Wubet T, Kottke I, Teketay D, Oberwinkler F (2003a) Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. For Ecol Manag 179:387–399

    Article  Google Scholar 

  • Wubet T, Weiss M, Kottke I, Oberwinkler F (2003b) Morphology and molecular diversity of arbuscular mycorrhizal fungi in wild and cultivated yew (Taxus baccata). Can J Bot 81:255–266

    Article  CAS  Google Scholar 

  • Yamato M (2001) Identification of a mycorrhizal fungus in the roots of achlorophyllous Sciaphila tosaensis Makino (Triuridaceae). Mycorrhiza 11:83–88

    Article  CAS  Google Scholar 

  • Yamato M (2004) Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza 14:127–131

    Article  PubMed  Google Scholar 

  • Yamato M, Iwasaki M (2002) Morphological types of arbuscular mycorrhizal fungi in roots of understory plants in Japanese deciduous broadleaved forests. Mycorrhiza 12:291–296

    Article  PubMed  Google Scholar 

  • Yawney WJ, Schultz RC (1990) Anatomy of a vesicular–arbuscular endomycorrhizal symbiosis between sugar maple (Acer saccharum Marsh) and Glomus etunicatum Becker and Gerdemann. New Phytol 114:47–57

    Article  Google Scholar 

  • Zhang Y, Guo LD, Liu RJ (2004) Arbuscular mycorrhizal fungi associated with common pteridophytes in Dujiangyan, southwest China. Mycorrhiza 14:25–30

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z-W (2000) The arbuscular mycorrhizas of pteridophytes in Yunnan, southwest China: evolutionary interpretations. Mycorrhiza 10:145–149

    Article  Google Scholar 

Download references

Acknowledgements

Our work is supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dickson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material, approximately 228 KB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, S., Smith, F.A. & Smith, S.E. Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next?. Mycorrhiza 17, 375–393 (2007). https://doi.org/10.1007/s00572-007-0130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-007-0130-9

Keywords

Navigation