Skip to main content
Log in

Localization of proton-ATPase genes expressed in arbuscular mycorrhizal tomato plants

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

In arbuscular mycorrhizal symbioses, solutes such as phosphate are transferred to the plant in return for photoassimilates. The uptake mechanism is probably facilitated by a proton gradient generated by proton H+-ATPases. We investigated expression of Lycopersicon esculentum Mill. H+-ATPases in mycorrhizal and non-mycorrhizal plants to determine if any are specifically regulated in response to colonization. Tissue expression and cellular localization of H+-ATPases were determined by RNA gel blot analysis and in situ hybridization of mycorrhizal and non-mycorrhizal roots. LHA1, LHA2, and LHA4 had high levels of expression in roots and were expressed predominantly in epidermal cells. LHA1 and LHA4 were also expressed in cortical cells containing arbuscules. The presence of arbuscules in root sections was correlated with lower levels of expression of these two isoforms in the epidermis. These results suggest that LHA1 and LHA4 expression is decreased in epidermal cells located in regions of the root that contain arbuscules. This provides evidence of differential regulation between molecular mechanisms involved in proton-coupled nutrient transfer either from the soil or fungus to the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Agresti A, Coull BA (1998) Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat 52:119–126

    Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benabdellah K, Azcon-Aguilar C, Ferrol N (1999) Plasma membrane ATPase and H+ transport activities in microsomal membranes from mycorrhizal tomato roots. J Exp Bot 50:1343–1349

    Article  CAS  Google Scholar 

  • Blilou I, Bueno P, Ocampo JA, Garcia-Garrido J (2000) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104:722–725

    Article  CAS  Google Scholar 

  • Bonanomi A, Oetiker JH, Guggenheim R, Boller T, Wiemken A, Vögeli-Lange R (2001) Arbuscular mycorrhizas in mini-mycorrhizotrons: first contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase. New Phytol 150:573–582

    Article  CAS  Google Scholar 

  • Colwell JD (1963) The estimation of phosphorous fertilizer requirements of wheat in southern N.S.W. by soil analysis. Aust J Exp Agric Anim Husb 3:190–197

    Article  CAS  Google Scholar 

  • Ewing NN, Bennett AB (1994) Assessment of the number and expression of P-type H+-ATPase genes in tomato. Plant Physiol 106:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing NN, Wimmers LE, Meyer DJ, Chetelat RT, Bennett AB (1990) Molecular cloning of tomato plasma membrane H+-ATPase. Plant Physiol 94:1874–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrol N, Pozo MJ, Antelo M, Azcon-Aguilar C (2002) Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants. J Exp Bot 53:1683–1687

    Article  CAS  PubMed  Google Scholar 

  • Gao LL, Knogge W, Delp G, Smith FA, Smith SE (2004) Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. Mol Plant Microbe Interact 17:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA (1991) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas, V. Is H+-ATPase a component of ATP-hydrolyzing enzyme activities in plant-fungus interfaces? New Phytol 117:61–74

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Weeks R, Tong Y, Emyr Davies TG, Leggewie G (2003) Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci 116:3135–3144

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–632

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalampanayil BD, Wimmers LE (2001) Identification and characterization of a salt-stressed-induced plasma membrane H+-ATPase in tomato. Plant Cell Environ 24:999–1005

    Article  CAS  Google Scholar 

  • Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biol 4:754–761

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2002) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148

    Article  Google Scholar 

  • Marx C, Dexheimer J, Gianinazzi-Pearson V, Gianinazzi S (1982) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. IV. Ultracytoenzymological evidence (ATPase) for active transfer processes in the host-arbuscular interface. New Phytol 90:37–43

    Article  CAS  Google Scholar 

  • McGonigle TF, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mito N, Wimmers LE, Bennett AB (1996) Sugar regulates mRNA abundance of H+-ATPase gene family members in tomato. Plant Physiol 112:1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy PJ, Langridge P, Smith SE (1997) Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular–arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 135:291–301

    Article  CAS  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of a novel mycorrhiza-specific phosphate transporter from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  CAS  PubMed  Google Scholar 

  • Oufattole M, Arango M, Boutry M (2000) Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H+-ATPase, and one of which is induced by mechanical stress. Planta 210:715–722

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pike SM, Xue-Cheng Z, Gassmann W (2006) Electrophysiological characterization of the Arabidopsis avrRot2-specific hypersensitive response in the absence of other bacterial signals. Plant Physiol 138:1009–1017

    Article  Google Scholar 

  • Pozo MJ, Azcon Aguilar C, Dumas Gaudot E, Barea JM (1999) β-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Barker SJ, Smith SE (1997) Production of near-synchronous fungal colonization in tomato for developmental and molecular analyzes of mycorrhiza. Mycol Res 101:966–970

    Article  Google Scholar 

  • Rosewarne GM, Barker SJ, Smith SE, Smith FA, Schachtman DP (1999) A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular–arbuscular mycorrhizal fungus. New Phytol 144:507–516

    Article  CAS  Google Scholar 

  • Ruíz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol Plant Microb Interact 12:976–984

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, USA

    Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd ed. Academic, London, UK

    Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683–694

    CAS  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Zhang JS, Xie C, Li ZY, Chen SY (1999) Expression of the plasma membrane H+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theor Appl Genet 99:1006–1011

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of the Australian Research Council is gratefully acknowledged by its contribution of an ARC Large Grant (D.P.S., S.E.S., and F.A.S.). Special thanks to Rosemary White for support with microscopy, to Megan C. Shelden for technical help, and to Ellen Marsh for developing methods for RNA extraction from tomato mycorrhizal roots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry M. Rosewarne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosewarne, G.M., Smith, F.A., Schachtman, D.P. et al. Localization of proton-ATPase genes expressed in arbuscular mycorrhizal tomato plants. Mycorrhiza 17, 249–258 (2007). https://doi.org/10.1007/s00572-006-0101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0101-6

Keywords

Navigation