Skip to main content

Advertisement

Log in

Design and optimization of MEMS based piezoelectric actuator for drug delivery systems

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, piezoelectric principle based an actuator is design for a micropump, which is suitable for drug delivery systems. The natural frequency and stress analysis have been performed to determine the reliability of the device in terms of minimum safety factor. We have observed the uniform deflections of the actuators by varying the thicknesses of the piezoelectric layer of the actuator. The design of the actuators is considered in circular and rectangular geometry. The materials are selected appropriately such that the component is biocompatible and can be used in biomedical applications. Among the various considerations made on dimensions and geometry, it is observed that the circular piezoelectric actuator undergoes a high displacement of 2950 μm at an infinitesimal thickness of 0.1 μm. At minimum safety factor of one, the maximum stress and voltage the actuator can hold is 596 GPa and 8500 V respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol. https://doi.org/10.1007/s00542-009-0804-7

    Article  Google Scholar 

  • Ardito R, Bertarelli E, Corigliano A, Gafforelli G (2013) On the application of piezolaminated composites to diaphragm micropumps. Compos Struct 99:231–240. https://doi.org/10.1016/j.compstruct.2012.11.041

    Article  Google Scholar 

  • Asadi Dereshgi H, Yildiz MZ (2019) Numerical study of novel MEMS-based valveless piezoelectric micropumps in the range of low voltages and frequencies. 2019 scientific meeting on electrical-electronics & biomedical engineering and computer science (EBBT). https://doi.org/10.1109/ebbt.2019.8741629

  • Cobo A, Sheybani R, Meng E (2015) MEMS: enabled drug delivery systems. Adv Healthc Mater 4(7):969–982. https://doi.org/10.1002/adhm.201400772

    Article  Google Scholar 

  • Cui Q, Liu C, Zha XF (2005) Simulation and optimization of a piezoelectric micropump for medical applications. Int J Adv Manuf Technol 36(5–6):516–524

    Google Scholar 

  • Davis SS (2000) Drug deliver systems. Interdisc Sci Rev 25(3):175–183. https://doi.org/10.1179/030801800679206

    Article  Google Scholar 

  • Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M (1998) Microfabricated immunoisolating biocapsules. Biotechnol Bioeng 57(1):118–120. https://doi.org/10.1002/(sici)1097-0290(19980105)57:1%3c118:aid-bit14%3e3.0.co;2-g

    Article  Google Scholar 

  • Dhananchezhiyana P, Hiremath Somashekhar S (2016) Optimization of multiple micro pumps to maximize the flow rate and minimize the flow pulsation. Procedia Technol 25(2016):1226–1233

    Article  Google Scholar 

  • Farshchi Yazdi SAF, Corigliano A, Ardito R (2019) 3-D design and simulation of a piezoelectric micropump. Micromachines (Basel) 10(4):259. https://doi.org/10.3390/mi10040259

    Article  Google Scholar 

  • Gensler H, Sheybani R, Li P-Y, Lo R, Zhu S, Yong K-T, Roy I, Prasad PN, Masood R, Sinha UK, Meng E (2010) IEEE 23rd international conference on micro electro mechanical systems (MEMS). IEEE, New York, p 23

  • Gidde RR, Pawar PM, Ronge BP, Dhamgaye VP (2018) Design optimization of an electromagnetic actuation based valveless micropump for drug delivery application. Microsyst Technol. https://doi.org/10.1007/s00542-018-3987-y(01234

    Article  Google Scholar 

  • Gidde RR, Pawar PM, Dhamgaye VP (2019) Fully coupled modeling and design of a piezoelectric actuation based valveless micropump for drug delivery application. Microsyst Technol. https://doi.org/10.1007/s00542-019-04535-8

    Article  Google Scholar 

  • Haldkar RK, Gupta VK, Sheorey T (2017) Modeling and flow analysis of piezoelectric based micropump with various shapes of microneedle. J Mech Sci Technol 31(6):2933–2941

    Article  Google Scholar 

  • Herrlich S, Spieth S, Messner S, Zengerle R (2012) Osmotic micropumps for drug delivery. Adv Drug Deliv Rev 64(14):1617–1627. https://doi.org/10.1016/j.addr.2012.02.003

    Article  Google Scholar 

  • Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Piezoelectric properties of Li- and Ta-modified (Na0.5K0.5) NbO3 ceramics. Appl Phys Lett 87(18):182905–182907. https://doi.org/10.1063/1.2123387

    Article  Google Scholar 

  • Hou W, Das B, Jiang Y, Qian S, Zheng X, Pi X, Yang J, Liu H, Zheng J, Zheng Z (2008) Simulation of the diaphragm properties of A PZT-based valveless micropump. ISBN: 978-1-4244-1907-4 CD: 978-1-4244-1908-1 INSPEC Accession Number: 9964067. https://doi.org/10.1109/nems.2008.4484369

  • Jiang Y, Wang H, Li S, Wen W (2014) Application of micro/nanoparticles in microfluidic sensors: a review. Sensors 14:6952–6964

    Article  Google Scholar 

  • Junwu K, Zhigang Y, Taijiang P, Guangming C, Boda W (2005) Design and test of a high-performance piezoelectric micropump for drug delivery. Sens Actuators A 121(2005):156–161

    Article  Google Scholar 

  • Karman S, Ibrahim F, Soin N (2007) A review of MEMS drug delivery in medical application. In: 3rd Kuala Lumpur international conference on biomedical engineering, pp 312–315

  • Lerner EI, Flashner-Barak M, Achthovem EV, Keegstra H, Smit R (2005) Delayed release formulations of 6-mercaptopurine. WO Patent 2005099666

  • Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2005) Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics. Jpn J Appl Phys 44(8):6136–6142. https://doi.org/10.1143/JJAP.44.6136

    Article  Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  Google Scholar 

  • Mu YH, Hung NP, Ngoi KA (1999) Optimisation design of a piezoelectric micropump. Int J Adv Manuf Technol 15:573–576

    Article  Google Scholar 

  • Prakash A, Markham A (1999) Oral delayed-release mesalazine: a review of its use in ulcerative colitis and Crohn’s disease. Drugs 57(3):383–408

    Article  Google Scholar 

  • Revathi S, Padmapriya N, Padmanabhan R (2018) A design analysis of piezoelectric-polymer composite-based valveless micropump. Int J Model Simul. https://doi.org/10.1080/02286203.2018.1482521

    Article  Google Scholar 

  • Ringgaard E, Wurlitzer T (2005) Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 25:2701

    Article  Google Scholar 

  • Sharma SK, Ruggenenti P, Remuzzi G (2007) Managing hypertension in diabetic patients—focus on trandolapril/verapamil combination. Vasc Health Risk Manag 3(4):453–465

    Google Scholar 

  • Shimamura K, Takeda H, Kohno T, Fakuda T (1996) Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications. J Cryst Growth 163:388

    Article  Google Scholar 

  • Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576. https://doi.org/10.1002/elps.200305584

    Article  Google Scholar 

  • Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693

    Article  Google Scholar 

  • Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55:315

    Article  Google Scholar 

  • Tariq N, Tayyaba S, Ashraf MW, Sarwar G, Wasim MF (2016) Comparative simulation of silicon, PDMS, PGA and PMMA actuator for piezoelectric micropump, INSPEC Accession Number: 16556469. https://doi.org/10.1109/icrai.2016.7791241

  • Tashiro S, Nagamatsu H, Nagata K (2002) Sinterability and piezoelectric properties of KNbO3 ceramics after substituting Pb and Na for K. Jpn J Appl Phys 4(11B):7113–7118. https://doi.org/10.1143/JJAP.41.7113

    Article  Google Scholar 

  • Yi L, Moon K, Wong CP (2005) Electronics without lead. Science 308:1419

    Article  Google Scholar 

  • Yildirim YA, Toprak A, Tigli O (2017) Piezoelectric membrane actuators for micropump applications using PVDF-TrFE. Microelectromech Syst 27(1):86–94

    Article  Google Scholar 

Download references

Acknowledgements

This document is prepared with the support of NMDC, Department of ECE, NIT Silchar for providing necessary FEM tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Srinivasa Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasa Rao, K., Hamza, M., Ashok Kumar, P. et al. Design and optimization of MEMS based piezoelectric actuator for drug delivery systems. Microsyst Technol 26, 1671–1679 (2020). https://doi.org/10.1007/s00542-019-04712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04712-9

Navigation