Skip to main content
Log in

Nonlinear resonant behaviors of embedded thick FG double layered nanoplates via nonlocal strain gradient theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This research deals with the nonlinear forced vibration behavior of embedded functionally graded double layered nanoplates with all edges simply supported via nonlocal strain gradient elasticity theory based on the Mindlin plate theory along with von Kármán geometric nonlinearity. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler–Pasternak foundation model is employed. The exact solution of the nonlinear forced vibration for primary and secondary resonance through the Harmonic Balance method is then established. For the double layered nanoplate, uniform distribution and sinusoidal distribution of loading are considered. It is assumed that the material properties of functionally graded double layered nanoplates are graded in the thickness direction and estimated through the rule of mixture. The Galerkin-based numerical technique is employed to reduce the set of nonlinear governing equations into a time-varying set of ordinary differential equations. The effects of different parameters such as length scale parameters, elastic foundation parameters, dimensionless transverse force and gradient index on the frequency responses of functionally graded double layered nanoplates are investigated. The results show that the length scale parameters give nonlinearity of the hardening type in nonlinear forced vibration and the increase in strain gradient parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akhavan H, Hashemi SH, Taher HR, Alibeigloo A, Vahabi S (2009) Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis. Comput Mater Sci 44(3):951–961

    Article  Google Scholar 

  • Alijani F, Bakhtiari-Nejad F, Amabili M (2011) Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dyn 66(3):251

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari R, Pourashraf T, Gholami R (2015) An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin Walled Struct 93:169–176

    Article  Google Scholar 

  • Arani AG, Jafari GS, Kolahchi R (2017) Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator. Microsyst Technol 23(5):1509–1535

    Article  Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48(13):1962–1990

    Article  Google Scholar 

  • Assadi A (2013) Size dependent forced vibration of nanoplates with consideration of surface effects. Appl Math Model 37(5):3575–3588

    Article  MathSciNet  MATH  Google Scholar 

  • Barati MR (2017) Investigating nonlinear vibration of closed circuit flexoelectric nanobeams with surface effects via Hamiltonian method. Microsyst Technol 24(4):1841–1851

    Article  Google Scholar 

  • Barati MR, Shahverdi H (2017) Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress–strain gradient theory. Compos Struct 176:982–995

    Article  Google Scholar 

  • Barati MR, Shahverdi H (2018) Frequency analysis of nanoporous mass sensors based on a vibrating heterogeneous nanoplate and nonlocal strain gradient theory. Microsyst Technol 24(3):1479–1494

    Article  Google Scholar 

  • Barretta R, Faghidian SA, Luciano R (2018) Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech Adv Mater Struct 25:1–9

    Article  Google Scholar 

  • Bayat M, Bayat M, Pakar I (2014) Forced nonlinear vibration by means of two approximate analytical solutions. Struct Eng Mech 50(6):853–862

    Article  MATH  Google Scholar 

  • Ebrahimi F, Barati MR (2017) Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory. Smart Mater Struct 26(6):065018

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2018) Damping vibration behavior of visco-elastically coupled double-layered graphene sheets based on nonlocal strain gradient theory. Microsyst Technol 24(3):1643–1658

    Article  Google Scholar 

  • Ebrahimi F, Dabbagh A (2017) On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Compos Struct 162:281–293

    Article  Google Scholar 

  • Ebrahimi F, Dabbagh A (2017b) Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates. Mater Res Express 4(2):025003

    Article  Google Scholar 

  • Ebrahimi F, Barati MR, Dabbagh A (2016) A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci 107:169–182

    Article  MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2018) Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Commun Nonlinear Sci Numer Simul 59:592–605

    Article  MathSciNet  Google Scholar 

  • Farokhi H, Ghayesh MH, Gholipour A, Tavallaeinejad M (2017) Nonlinear oscillations of viscoelastic microplates. Int J Eng Sci 118:56–69

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Alici G (2016) Internal energy transfer in dynamical behavior of slightly curved shear deformable microplates. J Comput Nonlinear Dyn 4:041002

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A (2017a) Oscillations of functionally graded microbeams. Int J Eng Sci 110:35–53

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2017b) Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams. Int J Eng Sci 120:51–62

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2018) Nonlinear oscillations of functionally graded microplates. Int J Eng Sci 122:56–72

    Article  MATH  Google Scholar 

  • Gholami R, Ansari R (2017) A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric–piezomagnetic rectangular nanoplates with various edge supports. Compos Struct 166:202–218

    Article  Google Scholar 

  • Guo S, He Y, Liu D, Lei J, Li Z (2018) Dynamic transverse vibration characteristics and vibro-buckling analyses of axially moving and rotating nanobeams based on nonlocal strain gradient theory. Microsyst Technol 24(2):963–977

    Article  Google Scholar 

  • He XQ, Wang JB, Liu B, Liew KM (2012) Analysis of nonlinear forced vibration of multi-layered graphene sheets. Comput Mater Sci 61:194–199

    Article  Google Scholar 

  • Hosseini M, Bahreman M, Jamalpoor A (2017a) Thermomechanical vibration analysis of FGM viscoelastic multi-nanoplate system incorporating the surface effects via nonlocal elasticity theory. Microsyst Technol 23(8):3041–3058

    Article  Google Scholar 

  • Hosseini M, Mofidi MR, Jamalpoor A, Jahanshahi MS (2017b) Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory. Microsyst Technol 24:2295–2316

    Article  Google Scholar 

  • Jadhav PA, Bajoria KM (2013) Free and forced vibration control of piezoelectric FGM plate subjected to electro-mechanical loading. Smart Mater Struct 22(6):065021

    Article  Google Scholar 

  • Jomehzadeh E, Saidi AR (2011) A study on large amplitude vibration of multilayered graphene sheets. Comput Mater Sci 50(3):1043–1051

    Article  Google Scholar 

  • Jomehzadeh E, Saidi AR, Jomehzadeh Z, Bonaccorso F, Palermo V, Galiotis C, Pugno NM (2015) Nonlinear subharmonic oscillation of orthotropic graphene–matrix composite. Comput Mater Sci 99:164–172

    Article  Google Scholar 

  • Kanani AS, Niknam H, Ohadi AR, Aghdam MM (2014) Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Compos Struct 115:60–68

    Article  Google Scholar 

  • Karimi M, Shahidi AR, Ziaei-Rad S (2017) Surface layer and nonlocal parameter effects on the in-phase and out-of-phase natural frequencies of a double-layer piezoelectric nanoplate under thermo-electro-mechanical loadings. Microsyst Technol 23(10):4903–4915

    Article  Google Scholar 

  • Karimipour I, Beni YT, Zeighampour H (2018) Nonlinear size-dependent pull-in instability and stress analysis of thin plate actuator based on enhanced continuum theories including nonlinear effects and surface energy. Microsyst Technol 24(4):1811–1839

    Article  Google Scholar 

  • Karličić D, Kozić P, Pavlović R, Nešić N (2017) Dynamic stability of single-walled carbon nanotube embedded in a viscoelastic medium under the influence of the axially harmonic load. Compos Struct 162:227–243

    Article  Google Scholar 

  • Khaniki HB, Hosseini-Hashemi S (2017) Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and a generalized differential quadrature method. Mater Res Express 4(6):065003

    Article  Google Scholar 

  • Kitipornchai S, He XQ, Liew KM (2005) Continuum model for the vibration of multilayered graphene sheets. Phys Rev B 72(7):075443

    Article  Google Scholar 

  • Li L, Hu Y (2016) Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci 107:77–97

    Article  MathSciNet  MATH  Google Scholar 

  • Li HB, Li YD, Wang X, Fang CQ (2015) Nonlinear resonant behaviors of graphene sheet affixed on an elastic medium considering scale and thermal effects. Phys E 72:178–188

    Article  Google Scholar 

  • Li C, Liu JJ, Cheng M, Fan XL (2017) Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos B Eng 116:153–169

    Article  Google Scholar 

  • Liu C, Ke LL, Yang J, Kitipornchai S, Wang YS (2016) Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory. Mech Adv Mater Struct 23:1–44

    Article  Google Scholar 

  • Liu W, Wu B, Lim CW (2017) Linear and nonlinear free vibrations of electrostatically actuated micro-/nanomechanical resonators. Microsyst Technol 23(1):113–123

    Article  Google Scholar 

  • Mahmoudpour E, Hosseini-Hashemi SH, Faghidian SA (2018) Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl Math Model 57:302–315

    Article  MathSciNet  Google Scholar 

  • Mehralian F, Beni YT, Zeverdejani MK (2017a) Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations. Phys B 521:102–111

    Article  Google Scholar 

  • Mehralian F, Beni YT, Zeverdejani MK (2017b) Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Phys B 514:61–69

    Article  Google Scholar 

  • Mei C, Decha-Umphai KA (1985) A finite element method for nonlinear forced vibrations of rectangular plates. AIAA J 23(7):1104–1110

    Article  MATH  Google Scholar 

  • Mirzaei M, Kiani Y (2017) Nonlinear free vibration of FG-CNT reinforced composite plates. Struct Eng Mech 64(3):381–390

    Google Scholar 

  • Rahimipour H, Arani AG, Sheikhzadeh GA (2014) Nonlocal vibration behaviour of a pasternak bonded double-piezoelectric-DWBNNT-reinforced microplate-system. In: International conference on machine learning, electrical and mechanical engineering (ICMLEME’2014) Dubai (UAE)

  • Rajabi K, Hosseini-Hashemi S (2017) Size-dependent free vibration analysis of first-order shear-deformable orthotropic nanoplates via the nonlocal strain gradient theory. Mater Res Express 4(7):075054

    Article  Google Scholar 

  • Rouzegar J, Abad F (2015) Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory. Thin Walled Struct 89:76–83

    Article  Google Scholar 

  • Sahmani S, Aghdam MM (2017) Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int J Mech Sci 131:95–106

    Article  Google Scholar 

  • Shahsavari D, Karami B, Janghorban M, Li L (2017) Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment. Mater Res Express 4(8):085013

    Article  Google Scholar 

  • Shen LE, Shen HS, Zhang CL (2010) Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput Mater Sci 48(3):680–685

    Article  Google Scholar 

  • Shooshtari A, Khadem SE (2006) A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates. Struct Eng Mech 24(5):543–560

    Article  Google Scholar 

  • Singh S, Patel BP (2016) Nonlinear dynamic response of single layer graphene sheets using multiscale modelling. Eur J Mech A Solids 59:165–177

    Article  MathSciNet  MATH  Google Scholar 

  • Sobhy M (2017) Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory. Struct Eng Mech 63(3):401–415

    Google Scholar 

  • Wang RT, Kuo NY (1999) Nonlinear vibration of Mindlin plate subjected to moving forces including the effect of weight of the plate. Struct Eng Mech 8(2):151–164

    Article  Google Scholar 

  • Wang YQ, Zu JW (2017) Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates. Smart Mater Struct 26(10):105014

    Article  Google Scholar 

  • Wang Y, Li F, Jing X, Wang Y (2015) Nonlinear vibration analysis of double-layered nanoplates with different boundary conditions. Phys Lett A 379(24–25):1532–1537

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mahmoudpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ N_{i}^{*} = N_{i} - \frac{{D_{1} }}{{\kappa^{2} \nu_{1} B_{1} }}\nabla^{2} N_{i} + \frac{{m_{2} }}{{\kappa^{2} \nu_{1} B_{1} }}\left( {1 - \mu^{2} \nabla^{2} } \right)\ddot{N}_{i} ,\quad i = 1,2, $$
$$ f_{i}^{*} = q_{i} - \frac{{D_{1} }}{{\kappa^{2} \nu_{1} B_{1} }}\nabla^{2} q_{i} + \frac{{m_{2} }}{{\kappa^{2} \nu_{1} B_{1} }}\left( {1 - \mu^{2} \nabla^{2} } \right)\ddot{q}_{i} ,\quad i = 1,2, $$
$$ C_{i}^{*} = C_{i} - \frac{{cD_{1} }}{{\kappa^{2} \nu_{1} B_{1} }}\nabla^{2} C_{i} + \frac{{m_{2} }}{{\kappa^{2} \nu_{1} B_{1} }}\left( {1 - \mu^{2} \nabla^{2} } \right)\ddot{C}_{i} ,\quad i = 1,2, $$
$$ N_{i} = \frac{{\partial^{2} \phi_{i} }}{{\partial y^{2} }}\frac{{\partial^{2} w_{i} }}{{\partial x^{2} }} + \frac{{\partial^{2} \phi_{i} }}{{\partial x^{2} }}\frac{{\partial^{2} w_{i} }}{{\partial y^{2} }} - 2\frac{{\partial^{2} \phi_{i} }}{\partial x\partial y}\frac{{\partial^{2} w_{i} }}{\partial x\partial y},\quad i = 1,2, $$
$$ C_{1} = c\left( {w_{1} - w_{2} } \right),\,C_{2} = c\left( {w_{2} - w_{1} } \right), $$
$$ q_{1} = F\left( {x,y,t} \right) - k_{l} w_{1} - k_{nl} w_{1}^{3} + k_{s} \nabla^{2} w_{1} , $$
$$ q_{2} = - k_{l} w_{2} - k_{nl} w_{2}^{3} + k_{s} \nabla^{2} w_{2} , $$
(68)
$$ \alpha_{1} = \frac{{a^{2} b^{2} \left( {m_{0} + m_{2} (c + k_{l} )\hat{G}} \right) + \left( {a^{2} + b^{2} } \right)\pi^{2} \left( {m_{0} (\hat{G}D_{1} + \mu^{2} ) + k_{s} m_{2} \hat{G} + m_{2} + m_{2} \mu^{2} (c + k_{l} + \hat{A}k_{s} )\hat{G}} \right)}}{{m_{0} m_{2} \hat{G}\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right]}}, $$
$$ \alpha_{2} = \frac{{3\left[ {A_{1} \left( {a^{4} + b^{4} } \right)\pi^{4} + 9a^{4} b^{4} k_{NL} } \right]}}{{16a^{4} b^{4} m_{0} }}, $$
$$ \alpha_{3} = \frac{{a^{4} b^{4} \left( {c + k_{l} } \right) + \hat{A}a^{4} b^{4} \left[ {k_{l} \hat{G}D_{1} + k_{s} + k_{l} \mu^{2} + c\left( {\hat{G}D_{1} + \mu^{2} } \right)} \right]}}{{m_{0} m_{2} \hat{G}\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right]^{2} }} + \frac{{\hat{A}^{2} a^{4} b^{4} \left[ {k_{s} \mu^{2} + D_{1} \left( {1 + \hat{G}\left( {k_{s} + \left( {c + k_{l} } \right)\mu^{2} } \right)} \right) + \hat{A}D_{1} (\hat{G}k_{s} \mu^{2} + l^{2} )} \right]}}{{m_{0} m_{2} \hat{G}\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right]^{2} }}, $$
$$ \alpha_{4} = \frac{{6\left[ {A_{1} \left( {a^{4} + b^{4} } \right)\pi^{4} + 9a^{4} b^{4} k_{NL} } \right]}}{{16a^{4} b^{4} m_{0} }}, $$
$$ \alpha_{5} = \frac{{\left[ {A_{1} \left( {a^{4} + b^{4} } \right)\pi^{4} + 9a^{4} b^{4} k_{NL} } \right]\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} (\hat{G}D_{1} + \mu^{2} )} \right]}}{{16a^{4} b^{4} m_{0} m_{2} \hat{G}\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right]}}, $$
$$ \alpha_{6} = - \frac{c}{{m_{0} }}, $$
$$ \alpha_{7} = - \frac{{c\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} (\hat{G}D_{1} + \mu^{2} )} \right]}}{{m_{0} m_{2} \hat{G}\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right]}}, $$
(69)
$$ \alpha_{1}^{*} = 16a^{4} b^{4} m_{0} \left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right], $$
$$ \alpha_{2}^{*} = 16a^{2} b^{2} \left[ {a^{4} b^{4} c + \hat{A}^{3} \pi^{6} a^{4} b^{4} D_{1} l^{2} + ca^{2} b^{2} \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right], $$
$$ \alpha_{3}^{*} = A_{1} \pi^{2} \left( {a^{4} + b^{4} } \right)\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right], $$
$$ \alpha_{4}^{*} = - 16a^{4} b^{4} c\left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right], $$
$$ \alpha_{5}^{*} = 16a^{6} b^{6} \left[ {a^{2} b^{2} + \left( {a^{2} + b^{2} } \right)\pi^{2} \mu^{2} } \right]. $$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudpour, E., Hosseini-Hashemi, S.H. & Faghidian, S.A. Nonlinear resonant behaviors of embedded thick FG double layered nanoplates via nonlocal strain gradient theory. Microsyst Technol 25, 951–964 (2019). https://doi.org/10.1007/s00542-018-4198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4198-2

Navigation