Skip to main content
Log in

Activation of apoptosis inhibitor of macrophage is a sensitive diagnostic marker for NASH-associated hepatocellular carcinoma

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

A diagnostic marker is needed enabling early and specific diagnosis of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH). Our recent findings have indicated that circulating apoptosis inhibitor of macrophage (AIM), which usually associates with IgM pentamer in the blood, is activated by its dissociation from IgM. We investigated the serum levels of IgM-free AIM for AIM activation and its possible relationship with development of HCC in NASH.

Methods

Serum levels of IgM-associated and IgM-free AIM were evaluated in patients with non-alcoholic fatty liver, NASH, and NASH-HCC using enzyme-linked immunosorbent assays and immunoblots. Liver biopsy specimens were graded and staged using Brunt’s classification.

Results

Forty-two patients with fatty liver, 141 with NASH, and 26 with NASH-HCC were evaluated. Patients with stage 4 or grade 3 NASH (with or without HCC) exhibited significantly higher levels of both IgM-free and total AIM than those with fatty liver, whereas the ratio of IgM-free-to-total AIM was equivalent in these groups. Among patients with the same fibrosis stage of NASH, those with HCC had significantly higher IgM-free but not total AIM levels, resulting in a proportional increase in the IgM-free/total AIM ratio. Analysis of the areas under the receiver operating characteristic curves indicated the high sensitivity of the IgM-free AIM for NASH-HCC.

Conclusions

Our observations suggest the activation of AIM in blood in the presence of NASH-HCC, with a significant increase in IgM-free AIM levels. IgM-free AIM serum levels appear to be a sensitive diagnostic marker for NASH-HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. EASL-EASD-EASO. Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. European Association for the Study of the Liver (EASL). European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). J Hepatol. 2016;64:1388–402.

    Google Scholar 

  2. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23.

    Article  PubMed  Google Scholar 

  3. Okanoue T, Umemura A, Yasui K, Itoh Y. Nonalcoholic fatty liver disease and non-alcoholic steatohepatitis in Japan. J Gastroenterol Hepatol. 2011;26(Suppl 1):153–62.

    Article  PubMed  CAS  Google Scholar 

  4. Bugianesi E, Leone N, Vanni E, Marchesini G, Brunello F, Carucci P, et al. Expanding the natural history of non-alcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology. 2002;123:134–40.

    Article  PubMed  Google Scholar 

  5. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, et al. The natural history of non-alcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129:113–21.

    Article  PubMed  Google Scholar 

  6. Bullock RE, Zaitoun AM, Aithal GP, Ryder SD, Beckingham IJ, Lobo DN. Association of non-alcoholic steatohepatitis without significant fibrosis with hepatocellular carcinoma. J Hepatol. 2004;41:685–6.

    Article  PubMed  Google Scholar 

  7. Yasui K, Hashimoto E, Komorizono Y, Koike K, Arii S, Imai Y, et al. Characteristics of patients with non-alcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2011;9:428–33.

    Article  PubMed  Google Scholar 

  8. Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD, Dufour JF, et al. Carriage of the PNPLA3 rs738409 C > G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014;61:75–81.

    Article  PubMed  CAS  Google Scholar 

  9. Baffy G. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J Hepatol. 2009;51:212–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14:181–94.

    Article  PubMed  CAS  Google Scholar 

  11. Miyazaki T, Hirokami Y, Matsuhashi N, Takatsuka H, Naito M. Increased susceptibility of thymocytes to apoptosis in mice lacking AIM, a novel murine macrophage-derived soluble factor belonging to the scavenger receptor cysteine-rich domain superfamily. J Exp Med. 1999;189:413–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tissot JD, Sanchez JC, Vuadens F, Scherl A, Schifferli JA, Hochstrasser DF, et al. IgM are associated to Sp alpha (CD5 antigen-like). Electrophoresis. 2002;23:1203–6.

    Article  PubMed  CAS  Google Scholar 

  13. Arai S, Shelton JM, Chen M, Bradley MN, Castrillo A, Bookout AL, et al. A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab. 2005;1:201–13.

    Article  PubMed  CAS  Google Scholar 

  14. Kurokawa J, Arai S, Nakashima K, Nagano H, Nishijima A, Miyata K, et al. Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metab. 2010;11:479–92.

    Article  PubMed  CAS  Google Scholar 

  15. Yamazaki T, Mori M, Arai S, Tateishi R, Abe M, Ban M, et al. Circulating AIM as an indicator of liver damage and hepatocellular carcinoma in humans. PLoS One. 2014;9:e109123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Maehara N, Arai S, Mori M, Iwamura Y, Kurokawa J, Kai T, et al. Circulating AIM prevents hepatocellular carcinoma through complement activation. Cell Rep. 2014;9:61–74.

    Article  PubMed  CAS  Google Scholar 

  17. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183–93.

    Article  PubMed  CAS  Google Scholar 

  18. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–9.

    Article  PubMed  CAS  Google Scholar 

  19. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.

    Article  PubMed  CAS  Google Scholar 

  20. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    Article  PubMed  Google Scholar 

  21. Mizuno M, Shima T, Oya H, Mitsumoto Y, Mizuno C, Isoda S, et al. Classification of patients with non-alcoholic fatty liver disease using rapid immunoassay of serum type IV collagen compared with that using liver histology and other fibrosis markers. Hepatol Res. 2016. doi:10.1111/hepr.12710.

    Article  PubMed  Google Scholar 

  22. Minagawa M, Ikai I, Matsuyama Y, Yamaoka Y, Makuuchi M. Staging of hepatocellular carcinoma: assessment of the Japanese TNM and AJCC/UICC TNM systems in a cohort of 13,772 patients in Japan. Ann Surg. 2007;245:909–22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96:644–7.

    Article  PubMed  Google Scholar 

  24. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L, et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell. 2004;119:299–309.

    Article  PubMed  CAS  Google Scholar 

  25. Valledor AF, Hsu LC, Ogawa S, Sawka-Verhelle D, Karin M, Glass CK. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc Natl Acad Sci USA D. 2004;101:17813–8.

    Article  CAS  Google Scholar 

  26. Ahn SB, Jang K, Jun DW, Lee BH, Shin KJ. Expression of liver X receptor correlates with intrahepatic inflammation and fibrosis in patients with non-alcoholic fatty liver disease. Dig Dis Sci. 2014;59:2975–82.

    Article  PubMed  CAS  Google Scholar 

  27. Arai S, Maehara N, Iwamura Y, Honda S, Nakashima K, Kai T, et al. Obesity-associated autoantibody production requires AIM to retain the immunoglobulin M immune complex on follicular dendritic cells. Cell Rep. 2013;3:1187–98.

    Article  PubMed  CAS  Google Scholar 

  28. Watt K, Uhanova J, Gong Y, et al. Serum immunoglobulins predict the extent of hepatic fibrosis in patients with chronic hepatitis C virus infection. J Viral Hepat. 2004;11:251–6.

    Article  PubMed  CAS  Google Scholar 

  29. McPherson S, Henderson E, Burt AD, et al. Serum immunoglobulin levels predict fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;60(5):1055–62.

    Article  PubMed  CAS  Google Scholar 

  30. Ferrín G, Rodríguez-Perálvarez M, Aguilar-Melero P, et al. Plasma protein biomarkers of hepatocellular carcinoma in HCV-infected alcoholic patients with cirrhosis. PLoS One. 2015;10(3):e0118527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Smathers RL, Chiang DJ, McMullen MR, Feldstein AE, Roychowdhury S, Nagy LE. Soluble IgM links apoptosis to complement activation in early alcoholic liver disease in mice. Mol Immunol. 2016;72:9–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mori M, Kimura H, Iwamura Y, Arai S, Miyazaki T. Modification of N-glycosylation modulates the secretion and lipolytic function of apoptosis inhibitor of macrophage (AIM). FEBS Lett. 2012;586:3569–74.

    Article  PubMed  CAS  Google Scholar 

  33. Sarrias MR, Padilla O, Monreal Y, Carrascal M, Abian J, Vives J, et al. Biochemical characterisation of recombinant and circulating human Spalpha. Tissue Antigens. 2004;63:335–44.

    Article  PubMed  CAS  Google Scholar 

  34. Dall’Olio F, Chiricolo M, D’Errico A, Gruppioni E, Altimari A, Fiorentino M, et al. Expression of beta-galactoside alpha2,6 sialyltransferase and of alpha2,6-sialylated glycoconjugates in normal human liver, hepatocarcinoma, and cirrhosis. Glycobiology. 2004;14:39–49.

    Article  PubMed  CAS  Google Scholar 

  35. Ang IL, Poon TC, Lai PB, Chan AT, Ngai SM, Hui AY, et al. Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. J Proteom Res. 2006;5:2691–700.

    Article  CAS  Google Scholar 

  36. Chrostek L, Cylwik B, Panasiuk A, Brodowska-Adamusiak D, Gruszewska E. Lipid-bound sialic acid (LSA) in liver diseases of different aetiologies. Ann Hepatol. 2011;10:150–4.

    PubMed  CAS  Google Scholar 

  37. Sun C, Chen P, Chen Q, Sun L, Kang X, Qin X, et al. Serum paraoxonase 1 heteroplasmon, a fucosylated, and sialylated glycoprotein in distinguishing early hepatocellular carcinoma from liver cirrhosis patients. Acta Biochim Biophys Sin (Shanghai). 2012;44:765–73.

    Article  CAS  Google Scholar 

  38. Comunale MA, Wang M, Anbarasan N, Betesh L, Karabudak A, Moritz E, et al. Total serum glycan analysis is superior to lectin-FLISA for the early detection of hepatocellular carcinoma. Proteom Clin Appl. 2013;7:690–700.

    CAS  Google Scholar 

  39. Carlson CM, Turpin EA, Moser LA, O’Brien KB, Cline TD, Jones JC, et al. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog. 2010;6:e1001136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Namachivayam K, Blanco CL, Frost BL, Reeves AA, Jagadeeswaran R, MohanKumar K, et al. Preterm human milk contains a large pool of latent TGF-β, which can be activated by exogenous neuraminidase. Am J Physiol Gastrointest Liver Physiol. 2013;304:G1055–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Miyagi T, Wada T, Yamaguchi K, Shiozaki K, Sato I, Kakugawa Y, et al. Human sialidase as a cancer marker. Proteomics. 2008;8:3303–11.

    Article  PubMed  CAS  Google Scholar 

  42. Hou G, Liu G, Yang Y, Li Y, Yuan S, Zhao L, et al. Neuraminidase 1 (NEU1) promotes proliferation and migration as a diagnostic and prognostic biomarker of hepatocellular carcinoma. Oncotarget. 2016. doi:10.18632/oncotarget.11778.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tokushige K, Hyogo H, Nakajima T, Ono M, Kawaguchi T, Honda K, et al. Hepatocellular carcinoma in Japanese patients with non-alcoholic fatty liver disease and alcoholic liver disease: multicenter survey. J Gastroenterol. 2016;51:586–96.

    Article  PubMed  CAS  Google Scholar 

  44. Paradis V, Zalinski S, Chelbi E, Guedj N, Degos F, Vilgrain V, et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology. 2009;49:851–9.

    Article  PubMed  Google Scholar 

  45. Gangadharan B, Antrobus R, Dwek RA, Zitzmann N. Novel serum biomarker candidates for liver fibrosis in hepatitis C patients. Clin Chem. 2007;53:1792–9.

    Article  PubMed  CAS  Google Scholar 

  46. Gray J, Chattopadhyay D, Beale GS, Patman GL, Miele L, King BP, et al. A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease. BMC Cancer. 2009;9:271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mera K, Uto H, Mawatari S, Ido A, Yoshimine Y, Nosaki T, et al. Serum levels of apoptosis inhibitor of macrophage are associated with hepatic fibrosis in patients with chronic hepatitis C. BMC Gastroenterol. 2014;14:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted based on the research collaboration contract between Saiseikai Suita Hospital and Eidia Co Ltd. and on the research collaboration contract between Toru Miyazaki in Tokyo University and Eidia Co Ltd. The authors thank the Department of Clinical Laboratory of Saiseikai Suita Hospital for suggestions for this study and carrying out clinical laboratory tests. This work was partly supported by CREST (AMED; to T.M.) and by the Research Program on Hepatitis from AMED (to T.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Okanoue.

Ethics declarations

Conflict of interest

Employment: Noriyuki Koyama/Eisai Co Ltd. Yuka Kanetsuki/Sekisui Medical Co Ltd. Jiro Hirota/Sekisui Medical Co Ltd. Tomohide Asai/Sekisui Medical Co Ltd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, N., Yamazaki, T., Kanetsuki, Y. et al. Activation of apoptosis inhibitor of macrophage is a sensitive diagnostic marker for NASH-associated hepatocellular carcinoma. J Gastroenterol 53, 770–779 (2018). https://doi.org/10.1007/s00535-017-1398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-017-1398-y

Keywords

Navigation