Skip to main content

Advertisement

Log in

Oxidative stress is closely associated with tumor angiogenesis of hepatocellular carcinoma

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Oxidative stress (OS) plays an important role in the progression of chronic liver disease and hepatocarcinogenesis. However, the role of OS in the progression of hepatocellular carcinoma (HCC) is unclear. The aim of this study was to assess whether OS promotes angiogenesis in HCC.

Methods

The expressions of vascular endothelial growth factor (VEGF), VEGF receptor2 (VEGFR2), and phosphorylated Akt were assessed, and microvessel density (MVD) and the cancer-associated fibroblast (CAF) population were examined by immunohistological staining in 55 HCC samples. The OS level in these tissues was assessed using 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE) immunostaining, and an 8-OHdG enzyme-linked immunosorbent assay (ELISA). The expression and activation of angiogenic factors and the effect of growth stimulation of human umbilical vein endothelial cells (HUVECs) were also assessed in vitro, using HLE hepatoma-derived cells and conditioned medium with or without treatment with hydrogen peroxide (H2O2); a phosphoinositide 3-kinase (PI3K) inhibitor, wortmannin; and an anti-oxidative agent, N-acetyl-l-cysteine (NAC).

Results

A higher OS grade was significantly associated with higher MVD, VEGF expression, Akt activity, and OS grade of CAFs, but not with the percentage of the CAFpopulation in HCC tissues. Additionally, cancer cells constituted a major population of OS marker-positive cells in HCC tissues. In vitro, H2O2 treatment induced up-regulation of VEGF at both the mRNA and protein levels, activated Akt, and resulted in the proliferation of HUVECs; the addition of wortmannin and NAC counteracted the effects of OS.

Conclusions

OS enhances the malignant potential of HCC through the stimulation of angiogenesis by activation of the Akt-VEGF pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States. Ann Intern Med. 2003;139:817–23.

    PubMed  Google Scholar 

  2. Reid AE. Non-alcoholic steatohepatitis. Gastroenterology. 2001;121:710–23.

    Article  PubMed  CAS  Google Scholar 

  3. Marrero JA, Fontana RJ, Su GL, Conjeevaram HS, Emick DM, Lok AS. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology. 2002;36:1349–54.

    PubMed  Google Scholar 

  4. Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology. 2002;122:1609–19.

    Article  PubMed  Google Scholar 

  5. Poon RT, Fan ST, Tsang FH, Wong J. Locoregional therapies for hepatocellular carcinoma: a critical review from the surgeon’s perspective. Ann Surg. 2002;235:466–86.

    Article  PubMed  Google Scholar 

  6. Torimura T, Sata M, Ueno T, Kin M, Tsuji R, Suzaku K, et al. Increased expression of vascular endothelial growth factor is associated with tumor progression in hepatocellular carcinoma. Hum Pathol. 1998;29:986–91.

    Article  PubMed  CAS  Google Scholar 

  7. El-Assal ON, Yamanoi A, Soda Y, Yamaguchi M, Igarashi M, Yamamoto A, et al. Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology. 1998;27:1554–62.

    Article  PubMed  CAS  Google Scholar 

  8. Storz P. Reactive oxygen species in tumor progression. Front Biosci. 2005;10:1881–96.

    Article  PubMed  CAS  Google Scholar 

  9. Chen Q, Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA. 1994;91:4130–4.

    Article  PubMed  CAS  Google Scholar 

  10. Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003;31:1441–4.

    Article  PubMed  CAS  Google Scholar 

  11. Maulik N, Das DK. Redox signaling vascular angiogenesis. Free Radic Biol Med. 2002;33:1047–60.

    Article  PubMed  CAS  Google Scholar 

  12. Nakajima T, Moriguchi M, Katagishi T, Sekoguchi S, Nishikawa T, Takashima H, et al. Premature telomere shortening and impaired regenerative response in hepatocytes of individuals with NAFLD. Liver Int. 2006;26:23–31.

    Article  PubMed  CAS  Google Scholar 

  13. Sekoguchi S, Nakajima T, Moriguchi M, Jo M, Nishikawa T, Katagishi T, et al. Role of cell-cycle turnover and oxidative stress in telomere shortening and cellular senescence in patients with chronic hepatitis C. J Gastroenterol Hepatol. 2007;22:182–90.

    Article  PubMed  CAS  Google Scholar 

  14. Nishikawa T, Nakajima T, Katagishi T, Okada Y, Jo M, Kagawa K, et al. Oxidative stress may enhance the malignant potential of human hepatocellular carcinoma by telomerase activation. Liver Int. 2009;29:846–56.

    Article  PubMed  CAS  Google Scholar 

  15. Szatrowski TP, Nathan CF. Production of large amount of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51:794–8.

    PubMed  CAS  Google Scholar 

  16. Mise M, Arii S, Higashituji H, Furutani M, Niwano M, Harada T, et al. Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology. 1996;23:455–64.

    Article  PubMed  CAS  Google Scholar 

  17. Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem. 2004;279:45643–51.

    Article  PubMed  CAS  Google Scholar 

  18. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715–20.

    Article  PubMed  CAS  Google Scholar 

  19. Desmet VJ, Gerber M, Hoofnagle JH, Manns M, Scheuer PJ. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology. 1994;19:1513–20.

    Article  PubMed  CAS  Google Scholar 

  20. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis, metastasis–-correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  21. Shigenaga MK, Gimeno CJ, Ames BN. Urinary 8-hydroxy-2′-deoxyguanosine as a biomarker of in vivo oxidative DNA damage. Proc Natl Acad Sci USA. 1989;86:9697–701.

    Article  PubMed  CAS  Google Scholar 

  22. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997;387:147–63.

    Article  PubMed  CAS  Google Scholar 

  23. Kato J, Kobune M, Nakamura T, Kuroiwa G, Takada K, Takimoto R, et al. Normalization of elevated hepatic 8-hydroxy-20-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res. 2001;61:8697–702.

    PubMed  CAS  Google Scholar 

  24. Maeda K, Koda M, Matono T, Sugihara T, Yamamoto S, Ueki M, et al. Preventive effects of ME3738 on hepatic fibrosis induced by bile duct ligation in rats. Hepatol Res. 2008;38:727–35.

    Article  PubMed  CAS  Google Scholar 

  25. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 2008;68:918–26.

    Article  PubMed  CAS  Google Scholar 

  26. Nishikawa T, Nakajima T, Moriguchi M, Jo M, Sekoguchi S, Ishii M, et al. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J Hepatol. 2006;44:1074–82.

    Article  PubMed  CAS  Google Scholar 

  27. Liu LZ, Hu XW, Xia C, He J, Zhou Q, Shi X, et al. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med. 2006;41:1521–33.

    Article  PubMed  CAS  Google Scholar 

  28. Jüngst C, Cheng B, Gehrke R, Schmitz V, Nischalke HD, Ramakers J, et al. Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinoma. Hepatology. 2004;39:1663–72.

    Article  PubMed  Google Scholar 

  29. Siegel AB, Cohen EI, Ocean A, Lehrer D, Goldenberg A, Knox JJ, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol. 2008;26:2992–8.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou Q, Liu LZ, Fu B, Hu X, Shi X, Fang J, et al. Reactive oxygen species regulate insulin-induced VEGF and HIF-1α expression through the activation of p70S6K1 in human prostate cancer cells. Carcinogenesis. 2007;28:28–37.

    Article  PubMed  CAS  Google Scholar 

  31. Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 2007;67:10823–30.

    Article  PubMed  CAS  Google Scholar 

  32. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60:1541–5.

    PubMed  CAS  Google Scholar 

  33. Tang J, Wang J, Kong X, Yang J, Guo L, Zheng F, et al. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp Cell Res. 2009;315:3521–31.

    Article  PubMed  CAS  Google Scholar 

  34. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008;68:1777–85.

    Article  PubMed  CAS  Google Scholar 

  35. Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, et al. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology. 2007;133:1637–48.

    Article  PubMed  CAS  Google Scholar 

  36. Vaquero EC, Edderkaoui M, Pandol SJ, Gukovsky I, Gukovskaya AS. Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem. 2004;279:34643–54.

    Article  PubMed  CAS  Google Scholar 

  37. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science. 2006;313:1785–7.

    Article  PubMed  CAS  Google Scholar 

  38. Gupta S, Kobayashi S, Phongkitkarun S, Broemeling LD, Kan Z. Effect of transcatheter hepatic arterial embolization on angiogenesis in an animal model. Invest Radiol. 2006;41:516–21.

    Article  PubMed  Google Scholar 

  39. Sergio A, Cristofori C, Cardin R, Pivetta G, Ragazzi R, Baldan A, et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the role of angiogenesis and invasiveness. Am J Gastroenterol. 2008;103:914–21.

    Article  PubMed  Google Scholar 

  40. Wang B, Xu H, Gao ZQ, Ning HF, Sun YQ, Cao GW. Increased expression of vascular endothelial growth factor in hepatocellular carcinoma after transcatheter arterial chemoembolization. Acta Radiol. 2008;49:523–9.

    Article  PubMed  CAS  Google Scholar 

  41. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25:695–705.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research ”KAKENHI” No. 19790491 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayasu Jo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, M., Nishikawa, T., Nakajima, T. et al. Oxidative stress is closely associated with tumor angiogenesis of hepatocellular carcinoma. J Gastroenterol 46, 809–821 (2011). https://doi.org/10.1007/s00535-011-0392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0392-z

Keywords

Navigation