Skip to main content

Advertisement

Log in

Risk of secondary lymphedema in breast cancer survivors is related to serum phospholipid fatty acid desaturation

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

Secondary lymphedema is a common irreversible side effect of breast cancer surgery. We investigated if risk of secondary lymphedema in breast cancer survivors was related to changes in serum phospholipid fatty acid composition.

Methods

Study subjects were voluntarily recruited into the following three groups: breast cancer survivors who had sentinel lymph node biopsy without lymphedema (SLNB), those who had auxillary lymph node dissection without lymphedema (ALND), and those who had ALND with lymphedema (ALND + LE). Body mass index (BMI), serum lipid profiles, bioimpedance data with single-frequency bioimpedance analysis (SFBIA), and serum phospholipid compositions were analyzed and compared among the groups.

Results

BMI, serum total cholesterol (total-C), and low-density lipoprotein cholesterol (LDL-C) and SFBIA ratios increased only in the ALND + LE. High polyunsaturated fatty acids (PUFAs) and high C20:4 to C18:2 n-6 PUFAs (arachidonic acid [AA]/linoleic acid [LA]) was detected in the ALND and ALND + LE groups compared to SLNB. The ALND + LE group showed increased activity indices for delta 6 desaturase (D6D) and D5D and increased ratio of AA to eicosapentaenoic acid (AA/EPA) compared to the ALND and SLNB groups. Correlation and regression analysis indicated that D6D, D5D, and AA/EPA were associated with SFBIA ratios.

Conclusion

We demonstrated that breast cancer survivors with lymphedema had elevated total PUFAs, fatty acid desaturase activity indices, and AA/EPA in serum phospholipids. Our findings suggested that desaturation extent of fatty acid composition might be related to the risk of secondary lymphedema in breast cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Soria P, Cuesta A, Romero H, Martinez FJ, Sastre A (1994) Dietary treatment of lymphedema by restriction of long-chain triglycerides. Angiology 45:703–707

    Article  CAS  PubMed  Google Scholar 

  2. Brennan MJ, DePompolo RW, FH G (1996) Focused review: postmastectomy lymphedema. Arch Phys Med Rehabil 77:S74–S80

    Article  CAS  PubMed  Google Scholar 

  3. Golshan M, Martin WJ, Dowlatshahi K (2003) Sentinel lymph node biopsy lowers the rate of lymphedema when compared with standard axillary lymph node dissection. Am Surg 69:209–211 discussion 212

    PubMed  Google Scholar 

  4. McLaughlin SA, Wright MJ, Morris KT, Giron GL, Sampson MR, Brockway JP, Hurley KE, Riedel ER, Van Zee KJ (2008) Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: objective measurements. J Clin Oncol Off J Am Soc Clin Oncol 26:5213–5219

    Article  Google Scholar 

  5. Carmichael AR (2006) Obesity as a risk factor for development and poor prognosis of breast cancer. BJOG 113:1160–1166

    Article  CAS  PubMed  Google Scholar 

  6. Werner RS, McCormick B, Petrek J, Cox L, Cirrincione C, Gray JR, Yahalom J (1991) Arm edema in conservatively managed breast cancer: obesity is a major predictive factor. Radiology 180:177–184

    Article  CAS  PubMed  Google Scholar 

  7. Rockson SG (2013) The lymphatics and the inflammatory response: lessons learned from human lymphedema. Lymphat Res Biol 11:117–120

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brorson H (2003) Liposuction in arm lymphedema treatment. Scand J Surg 92:287–295

    CAS  PubMed  Google Scholar 

  9. Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW, Oliver G (2005) Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 37:1072–1081

    Article  CAS  PubMed  Google Scholar 

  10. Calder PC (2011) Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol 668(Suppl 1):S50–S58

    Article  CAS  PubMed  Google Scholar 

  11. Ma DW (2007) Lipid mediators in membrane rafts are important determinants of human health and disease. Appl Physiol Nutr Metab 32:341–350

    Article  CAS  PubMed  Google Scholar 

  12. Schmitz G, Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47:147–155

    Article  CAS  PubMed  Google Scholar 

  13. Storlien LH, Hulbert AJ, Else PL (1998) Polyunsaturated fatty acids, membrane function and metabolic diseases such as diabetes and obesity. Curr Opin Clin Nutr Metab Care 1:559–563

    Article  CAS  PubMed  Google Scholar 

  14. Cinti DL, Cook L, Nagi MN, SK S (1992) The fatty acid chain elongation system of mammalian endoplasmic reticulum. Prog Lipid Res 31:1–51

    Article  CAS  PubMed  Google Scholar 

  15. Obukowicz MG, Welsch DJ, Salsgiver WJ, Martin-Berger CL, Chinn KS, Duffin KL, Raz A, Needleman P (1998) Novel, selective delta6 or delta5 fatty acid desaturase inhibitors as antiinflammatory agents in mice. J Pharmacol Exp Ther 287:157–166

    CAS  PubMed  Google Scholar 

  16. Domei T, Yokoi H, Kuramitsu S, Soga Y, Arita T, Ando K, Shirai S, Kondo K, Sakai K, Goya M, Iwabuchi M, Ueeda M, Nobuyoshi M (2012) Ratio of serum n-3 to n-6 polyunsaturated fatty acids and the incidence of major adverse cardiac events in patients undergoing percutaneous coronary intervention. Circ J 76:423–429

    Article  CAS  PubMed  Google Scholar 

  17. International Society of L (2013) The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. Lymphology 46:1–11

    Google Scholar 

  18. Folch J, Lees M, GH SS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  19. Bligh EG, WJ D (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  20. Lepage G, CC R (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    CAS  PubMed  Google Scholar 

  21. Inoue N, Nagao K, Hirata J, Wang YM, Yanagita T (2004) Conjugated linoleic acid prevents the development of essential hypertension in spontaneously hypertensive rats. Biochem Biophys Res Commun 323:679–684

    Article  CAS  PubMed  Google Scholar 

  22. Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A (2002) Desaturation and elongation of fatty acids and insulin action. Ann N York Acad Sci 967:183–195

    Article  CAS  Google Scholar 

  23. Peter A, Cegan A, Wagner S, Lehmann R, Stefan N, Konigsrainer A, Konigsrainer I, Haring HU, Schleicher E (2009) Hepatic lipid composition and stearoyl-coenzyme A desaturase 1 mRNA expression can be estimated from plasma VLDL fatty acid ratios. Clin Chem 55:2113–2120

    Article  CAS  PubMed  Google Scholar 

  24. Martinelli N, Girelli D, Malerba G, Guarini P, Illig T, Trabetti E, Sandri M, Friso S, Pizzolo F, Schaeffer L, Heinrich J, Pignatti PF, Corrocher R, Olivieri O (2008) FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr 88:941–949

    CAS  PubMed  Google Scholar 

  25. Brand A, Bauer NG, Hallott A, Goldbaum O, Ghebremeskel K, Reifen R, Richter-Landsberg C (2010) Membrane lipid modification by polyunsaturated fatty acids sensitizes oligodendroglial OLN-93 cells against oxidative stress and promotes up-regulation of heme oxygenase-1 (HSP32). J Neurochem 113:465–476

    Article  CAS  PubMed  Google Scholar 

  26. Brand A, Gil S, Seger R, Yavin E (2001) Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation. J Neurochem 76:910–918

    Article  CAS  PubMed  Google Scholar 

  27. Cao D, Xue R, J X, Liu Z (2005) Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J Nutr Biochem 16:538–546

    Article  CAS  PubMed  Google Scholar 

  28. Siems WG, Brenke R, Beier A, Grune T (2002) Oxidative stress in chronic lymphoedema. QJM 95:803–809

    Article  CAS  PubMed  Google Scholar 

  29. Chan PH, RA F (1978) Brain edema: induction in cortical slices by polyunsaturated fatty acids. Science 201:358–360

    Article  CAS  PubMed  Google Scholar 

  30. Brasitus TA, Davidson NO, Schachter D (1985) Variations in dietary triacylglycerol saturation alter the lipid composition and fluidity of rat intestinal plasma membranes. Biochim Biophys Acta 812:460–472

    Article  CAS  PubMed  Google Scholar 

  31. Saadatian-Elahi M, Toniolo P, Ferrari P, Goudable J, Akhmedkhanov A, Zeleniuch-Jacquotte A, Riboli E (2002) Serum fatty acids and risk of breast cancer in a nested case-control study of the New York University Women’s Health Study. Cancer Epidemiol Biomark Prev 11:1353–1360

    CAS  Google Scholar 

  32. Thiebaut AC, Rotival M, Gauthier E, Lenoir GM, Boutron-Ruault MC, Joulin V, Clavel-Chapelon F, Chajes V (2009) Correlation between serum phospholipid fatty acids and dietary intakes assessed a few years earlier. Nutr Cancer 61:500–509

    Article  CAS  PubMed  Google Scholar 

  33. Pala V, Krogh V, Muti P, Chajes V, Riboli E, Micheli A, Saadatian M, Sieri S, Berrino F (2001) Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study. J Natl Cancer Inst 93:1088–1095

    Article  CAS  PubMed  Google Scholar 

  34. Zurier RB (1993) Fatty acids, inflammation and immune responses. Prostaglandins Leukot Essent Fat Acids 48:57–62

    Article  CAS  Google Scholar 

  35. Cleland LG, French JK, Betts WH, Murphy GA, MJ E (1988) Clinical and biochemical effects of dietary fish oil supplements in rheumatoid arthritis. J Rheumatol 15:1471–1475

    CAS  PubMed  Google Scholar 

  36. Lee TH, Hoover RL, Williams JD, Sperling RI, Ravalese J 3rd, Spur BW, Robinson DR, Corey EJ, Lewis RA, KF A (1985) Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. New Engl J Med 312:1217–1224

    Article  CAS  PubMed  Google Scholar 

  37. Prickett JD, Robinson DR, Steinberg AD (1981) Dietary enrichment with the polyunsaturated fatty acid eicosapentaenoic acid prevents proteinuria and prolongs survival in NZB × NZW F1 mice. J Clin Invest 68:556–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raederstorff D, Pantze M, Bachmann H, Moser U (1996) Anti-inflammatory properties of docosahexaenoic and eicosapentaenoic acids in phorbol-ester-induced mouse ear inflammation. Int Arch Allergy Immunol 111:284–290

    Article  CAS  PubMed  Google Scholar 

  39. Torres-Guzman AM, Morado-Urbina CE, Alvarado-Vazquez PA, Acosta-Gonzalez RI, Chavez-Pina AE, Montiel-Ruiz RM, Jimenez-Andrade JM (2014) Chronic oral or intraarticular administration of docosahexaenoic acid reduces nociception and knee edema and improves functional outcomes in a mouse model of complete Freund’s adjuvant-induced knee arthritis. Arthritis Res Ther 16:R64

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lambert IH, Hoffmann EK, Christensen P (1987) Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J Membr Biol 98:247–256

    Article  CAS  PubMed  Google Scholar 

  41. Thoroed SM, Lauritzen L, Lambert IH, Hansen HS, Hoffmann EK (1997) Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J Membr Biol 160:47–58

    Article  CAS  PubMed  Google Scholar 

  42. Eveloff JL, DG W (1987) Activation of ion transport systems during cell volume regulation. Am J Phys 252:F1–10

    CAS  Google Scholar 

  43. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U (2009) Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis 8:37

    Article  PubMed  PubMed Central  Google Scholar 

  44. Obukowicz M, Welsch D, Salsgiver W, Martin-Berger C, Chinn K, Duffin K, Raz A, Needleman P (1999) Novel, selective delta6 or delta5 fatty acid desaturase inhibitors as antiinflammatory agents in mice. Lipids 34(Suppl):S149

    Article  CAS  PubMed  Google Scholar 

  45. Obukowicz MG, Raz A, Pyla PD, Rico JG, Wendling JM, Needleman P (1998) Identification and characterization of a novel delta6/delta5 fatty acid desaturase inhibitor as a potential anti-inflammatory agent. Biochem Pharmacol 55:1045–1058

    Article  CAS  PubMed  Google Scholar 

  46. Chapkin RS, KJ C (1991) Utilization of gammalinolenic acid by mouse peritoneal macrophages. Biochim Biophys Acta 1085:365–370

    Article  CAS  PubMed  Google Scholar 

  47. Kirtland SJ (1988) Prostaglandin E1: a review. Prostaglandins Leukot Essent Fat Acids 32:165–174

    Article  CAS  Google Scholar 

  48. Ward LC, Bunce IH, Cornish BH, Mirolo BR, Thomas BJ, LC J (1992) Multi-frequency bioelectrical impedance augments the diagnosis and management of lymphoedema in post-mastectomy patients. Eur J Clin Investig 22:751–754

    Article  CAS  Google Scholar 

  49. Warren AG, Janz BA, Slavin SA, LJ B (2007) The use of bioimpedance analysis to evaluate lymphedema. Ann Plast Surg 58:541–543

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Research Foundation (NRF) of Korea grant funded by the Korean government (MSIP; No. 2014R1A2A2A01006008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Min Lee.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and it followed the ethical guidelines of the 1975 Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, E., Yim, S.Y., Do, H.J. et al. Risk of secondary lymphedema in breast cancer survivors is related to serum phospholipid fatty acid desaturation. Support Care Cancer 24, 3767–3774 (2016). https://doi.org/10.1007/s00520-016-3197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-016-3197-z

Keywords

Navigation