Skip to main content
Log in

Hypertension and coronary artery disease: epidemiology, physiology, effects of treatment, and recommendations

A joint scientific statement from the Austrian Society of Cardiology and the Austrian Society of Hypertension

  • consensus report
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

High blood pressure is a major modifiable risk factor for all clinical manifestations of coronary artery disease (CAD). In people without known cardiovascular disease, the lowest systolic (down to 90–114 mmHg) and the lowest diastolic (down to 60–74 mmHg) pressures are associated with the lowest risk for developing CAD. Although diastolic blood pressure is the strongest predictor of CAD in younger and middle-aged people, this relationship becomes inverted and pulse pressure shows the strongest direct relationship with CAD in people above 60 years of age.

Pathophysiological mechanisms of blood pressure as a risk factor for CAD are complex and include the influence of blood pressure as a physical force on the development of the atherosclerotic plaque, and the relationship between pulsatile hemodynamics/arterial stiffness and coronary perfusion. Treatment of arterial hypertension has been proven to prevent coronary events in patients without clinical CAD. In patients with established CAD, the effect of blood pressure lowering per se is beneficial, probably more than specific drugs or drug classes. The important exceptions are beta blockers (BBs), which are superior to all other drug classes for use after a recent myocardial infarction. Blood pressure targets in patients with established CAD have created controversy in the light of the so-called J-curve phenomenon, which describes an increase in coronary events at lower diastolic blood pressures. One explanation for this observation is that perfusion of the left ventricle occurs predominantly during diastole, and that coronary autoregulation may be exhausted with low diastolic blood pressure in the setting of left ventricular hypertrophy and atherosclerotic narrowing of the epicardial coronaries. The worst situation is a high systolic blood pressure in the presence of a low diastolic blood pressure, both a hallmark of increased aortic stiffness. However, the lowering of systolic blood pressure is clearly beneficial in this setting, even at the price of further lowering diastolic pressure. Primary blood pressure goal in patients with established CAD is below 140/90 mmHg. Recent studies suggest that a lower systolic blood pressure may be appropriate, whereas caution is advised with diastolic blood pressure below 60 mmHg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Suzanne Oparil, Maria Czarina Acelajado, … Paul K. Whelton

References

  1. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C.. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  4. Rapsomaniki E, Timmis A, George J, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014;383:1899–911.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Franklin SS, Larson MG, Khan SA, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation. 2001;103:1245–9.

    Article  CAS  PubMed  Google Scholar 

  6. Benetos A, Thomas F, Safar ME, Bean KE, Guize L. Should diastolic and systolic blood pressure be considered for cardiovascular risk evaluation: a study in middle-aged men and women. J Am Coll Cardiol. 2001;37:163–8.

    Article  CAS  PubMed  Google Scholar 

  7. Watschinger BAK, Auer J, Drexel H, Eber B, Fasching P, Grüner P, Hohenstein K, Koppelstätter C, Lang W, Mayer G, Perl S, Pichler M, Pilz H, Rieder A, Rosenkranz A, Schernthaner G, Slany J, Srefenelli T, Steiner S, Weber T, Wenzel RR, Zweiker R. Klassifikation, Diagnostik, und Therapie der arteriellen Hypertonie 2013: Empfehlungen der Österreichischen Gesellschaft für Hypertensiokogie (ÖGH. J Hyperton. 2013;17:99–108.

    Google Scholar 

  8. Verdecchia P, Schillaci G, Reboldi G, Franklin SS, Porcellati C. Different prognostic impact of 24-hour mean blood pressure and pulse pressure on stroke and coronary artery disease in essential hypertension. Circulation. 2001;103:2579–84.

    Article  CAS  PubMed  Google Scholar 

  9. Mancia G, Fagard R, Narkiewicz K, et al. ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the european society of hypertension (ESH) and of the european society of cardiology (ESC). J Hypertens. 2013;2013(31):1281–357.

    Article  Google Scholar 

  10. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.

    Article  CAS  PubMed  Google Scholar 

  11. Cruickshank JM. The role of coronary perfusion pressure. Eur Heart J. 1992;13(Suppl D):39–43.

    Article  PubMed  Google Scholar 

  12. Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86:1263–308.

    Article  CAS  PubMed  Google Scholar 

  13. Sanders M, White FC, Peterson TM, Bloor CM. Characteristics of coronary blood flow and transmural distribution in miniature pigs. Am J Physiol. 1978;235:H601–9.

    CAS  PubMed  Google Scholar 

  14. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging. 2009;2:1009–23.

    Article  PubMed  Google Scholar 

  15. O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50:1–13.

    Article  PubMed  Google Scholar 

  16. Leung MC, Meredith IT, Cameron JD. Aortic stiffness affects the coronary blood flow response to percutaneous coronary intervention. Am J Physiol Heart Circ Physiol. 2006;290:H624–30.

    Article  CAS  PubMed  Google Scholar 

  17. Saito M, Okayama H, Nishimura K, et al. Possible link between large artery stiffness and coronary flow velocity reserve. Heart. 2008;94:e20.

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe H, Ohtsuka S, Kakihana M, Sugishita Y. Decreased aortic compliance aggravates subendocardial ischaemia in dogs with stenosed coronary artery. Cardiovasc Res. 1992;26:1212–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kingwell BA, Waddell TK, Medley TL, Cameron JD, Dart AM. Large artery stiffness predicts ischemic threshold in patients with coronary artery disease. J Am Coll Cardiol. 2002;40:773–9.

    Article  PubMed  Google Scholar 

  20. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  PubMed  Google Scholar 

  21. Chirinos JA, Zambrano JP, Chakko S, et al. Aortic pressure augmentation predicts adverse cardiovascular events in patients with established coronary artery disease. Hypertension. 2005;45:980–5.

    Article  CAS  PubMed  Google Scholar 

  22. Weber T, Auer J, O’Rourke MF, et al. Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J. 2005;26:2657–63.

    Article  PubMed  Google Scholar 

  23. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J Hypertens. 2014;32:2285–95.

    Article  CAS  PubMed  Google Scholar 

  24. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 2. Effects at different baseline and achieved blood pressure levels – overview and meta-analyses of randomized trials. J Hypertens. 2014;32:2296–304.

    Article  CAS  PubMed  Google Scholar 

  25. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 4. Effects of various classes of antihypertensive drugs – Overview and meta-analyses. J Hypertens. 2015;33:195–211.

    Article  CAS  PubMed  Google Scholar 

  26. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering on outcome incidence in hypertension: 5. Head-to-head comparisons of various classes of antihypertensive drugs – overview and meta-analyses. J Hypertens. 2015;33:1321–41.

    Article  CAS  PubMed  Google Scholar 

  27. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.

    Article  Google Scholar 

  29. Kjeldsen SE, Narkiewicz K, Hedner T, Mancia G. The SPRINT study: Outcome may be driven by difference in diuretic treatment demasking heart failure and study design may support systolic blood pressure target below 140 mmHg rather than below 120 mmHg. Blood Press. 2016;25:63–6.

    Article  PubMed  Google Scholar 

  30. Myers MG, Godwin M, Dawes M, et al. Conventional versus automated measurement of blood pressure in primary care patients with systolic hypertension: randomised parallel design controlled trial. BMJ. 2011;342:d286.

    Article  PubMed  PubMed Central  Google Scholar 

  31. D’Agostino RB, Belanger AJ, Kannel WB, Cruickshank JM. Relation of low diastolic blood pressure to coronary heart disease death in presence of myocardial infarction: the Framingham Study. BMJ. 1991;303:385–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Franklin SS, Gokhale SS, Chow VH, et al. Does low diastolic blood pressure contribute to the risk of recurrent hypertensive cardiovascular disease events? The Framingham Heart Study. Hypertension. 2015;65:299–305.

    Article  CAS  PubMed  Google Scholar 

  33. Canty JM Jr. Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res. 1988;63:821–36.

    Article  PubMed  Google Scholar 

  34. Polese A, Cesare N De, Montorsi P, et al. Upward shift of the lower range of coronary flow autoregulation in hypertensive patients with hypertrophy of the left ventricle. Circulation. 1991;83:845–53.

    Article  CAS  PubMed  Google Scholar 

  35. Wallbridge DR, Cobbe SM. Coronary haemodynamics in left ventricular hypertrophy. Heart. 1996;75:369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosendorff C, Lackland DT, Allison M, et al. Treatment of hypertension in patients with coronary artery disease: a scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension. Hypertension. 2015;65:1372–407.

    Article  CAS  PubMed  Google Scholar 

  37. Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA. 2004;292:2217–25.

    Article  CAS  PubMed  Google Scholar 

  38. Sipahi I, Tuzcu EM, Schoenhagen P, et al. Effects of normal, pre-hypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. J Am Coll Cardiol. 2006;48:833–8.

    Article  PubMed  Google Scholar 

  39. Stewart IM. Relation of reduction in pressure to first myocardial infarction in patients receiving treatment for severe hypertension. Lancet. 1979;1:861–5.

    Article  CAS  PubMed  Google Scholar 

  40. Cruickshank JM, Thorp JM, Zacharias FJ. Benefits and potential harm of lowering high blood pressure. Lancet. 1987;1:581–4.

    Article  CAS  PubMed  Google Scholar 

  41. Farnett L, Mulrow CD, Linn WD, Lucey CR, Tuley MR. The J-curve phenomenon and the treatment of hypertension. Is there a point beyond which pressure reduction is dangerous? JAMA. 1991;265:489–95.

    Article  CAS  PubMed  Google Scholar 

  42. Pepine CJ, Handberg EM, Cooper-DeHoff RM, et al. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290:2805–16.

    Article  CAS  PubMed  Google Scholar 

  43. Messerli FH, Mancia G, Conti CR, et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Ann Intern Med. 2006;144:884–93.

    Article  PubMed  Google Scholar 

  44. Verdecchia P, Reboldi G, Angeli F, et al. Systolic and diastolic blood pressure changes in relation with myocardial infarction and stroke in patients with coronary artery disease. Hypertension. 2015;65:108–14.

    Article  CAS  PubMed  Google Scholar 

  45. Investigators O, Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  Google Scholar 

  46. Messerli FH, Panjrath GS. The J-curve between blood pressure and coronary artery disease or essential hypertension: exactly how essential? J Am Coll Cardiol. 2009;54:1827–34.

    Article  PubMed  Google Scholar 

  47. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:145–53.

    Article  CAS  PubMed  Google Scholar 

  48. Wang JG, Staessen JA, Franklin SS, Fagard R, Gueyffier F. Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension. 2005;45:907–13.

    Article  CAS  PubMed  Google Scholar 

  49. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351:1755–62.

    Article  CAS  PubMed  Google Scholar 

  50. Group AS, Cushman WC, Evans GW, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  Google Scholar 

  51. Margolis KL, O’Connor PJ, Morgan TM, et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care. 2014;37:1721–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams B. Hypertension and the “J-curve”. J Am Coll Cardiol. 2009;54:1835–6.

    Article  PubMed  Google Scholar 

  53. Mancia G, Messerli F, Bakris G, Zhou Q, Champion A, Pepine CJ. Blood pressure control and improved cardiovascular outcomes in the International Verapamil SR-Trandolapril Study. Hypertension. 2007;50:299–305.

    Article  CAS  PubMed  Google Scholar 

  54. Maddox TM, Ross C, Tavel HM, et al. Blood pressure trajectories and associations with treatment intensification, medication adherence, and outcomes among newly diagnosed coronary artery disease patients. Circ Cardiovasc Qual Outcomes. 2010;3:347–57.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Task FM, Montalescot G, Sechtem U, et al. ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;2013(34):2949–3003.

    Google Scholar 

  56. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–847.

    Article  PubMed  Google Scholar 

  57. Dagenais GR, Pogue J, Fox K, Simoons ML, Yusuf S. Angiotensin-converting-enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: a combined analysis of three trials. Lancet. 2006;368:581–8.

    Article  CAS  PubMed  Google Scholar 

  58. Patel A, Group AC, MacMahon S, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370:829–40.

    Article  CAS  PubMed  Google Scholar 

  59. Telmisartan Randomised AssessmeNt Study in ACEiswcDI, Yusuf S, Teo K, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008;372:1174–83.

    Article  Google Scholar 

  60. Hamm CW, Bassand JP, Agewall S, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2999–3054.

    Article  PubMed  Google Scholar 

  61. Task Force on the management of STseamiotESoC, Steg PG, James SK, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–619.

    Article  Google Scholar 

  62. Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA. 2000;284:835–42.

    Article  CAS  PubMed  Google Scholar 

  63. Chang WC, Boersma E, Granger CB, et al. Dynamic prognostication in non-ST-elevation acute coronary syndromes: insights from GUSTO-IIb and PURSUIT. Am Heart J. 2004;148:62–71.

    Article  PubMed  Google Scholar 

  64. Bangalore S, Qin J, Sloan S, Murphy SA, Cannon CP, PI‑TT I. What is the optimal blood pressure in patients after acute coronary syndromes?: relationship of blood pressure and cardiovascular events in the pravastatin or atorVastatin evaluation and infection therapy-thrombolysis in myocardial infarction (PROVE IT-TIMI) 22 trial. Circulation. 2010;122:2142–51.

    Article  CAS  PubMed  Google Scholar 

  65. Werf F Van de, Barron HV, Armstrong PW, et al. Incidence and predictors of bleeding events after fibrinolytic therapy with fibrin-specific agents: a comparison of TNK-tPA and rt-PA. Eur Heart J. 2001;22:2253–61.

    Article  PubMed  Google Scholar 

  66. Rosendorff C, Lackland DT, Allison M, et al. Treatment of hypertension in patients with coronary artery disease: A scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension. J Am Soc Hypertens. 2015;9:453–98.

    Article  PubMed  Google Scholar 

  67. Jiang XJ, O’Rourke MF, Jin WQ, et al. Quantification of glyceryl trinitrate effect through analysis of the synthesised ascending aortic pressure waveform. Heart. 2002;88:143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gruppo Italiano per lo Studio della Sopravvivenza nell’infarto Miocardico. GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet. 1994;343:1115–22.

    Google Scholar 

  69. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet. 1995;345:669–85.

    Article  Google Scholar 

  70. Report of The Holland Interuniversity Nifedipine/Metoprolol Trial (HINT) Research Group. Early treatment of unstable angina in the coronary care unit: a randomised, double blind, placebo controlled comparison of recurrent ischaemia in patients treated with nifedipine or metoprolol or both. Br Heart J. 1986;56:400–13.

    Article  Google Scholar 

  71. The Danish Study Group on Verapamil in Myocardial Infarction. Secondary prevention with verapamil after myocardial infarction. Am J Cardiol. 1990;66:33I–40I.

    Google Scholar 

  72. Moss AJ, Oakes D, Rubison M, The Multicenter Diltiazem Postinfarction Trial Research Group. Effects of diltiazem on long-term outcome after acute myocardial infarction in patients with and without a history of systemic hypertension. Am J Cardiol. 1991;68:429–33.

    Article  CAS  PubMed  Google Scholar 

  73. ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation. 1998;97:2202–12.

    Article  Google Scholar 

  74. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893–906.

    Article  CAS  PubMed  Google Scholar 

  75. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  CAS  PubMed  Google Scholar 

  76. Adams KF Jr., Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.

    Article  PubMed  Google Scholar 

  77. Drazner MH, Rame JE, Marino EK, et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol. 2004;43:2207–15.

    Article  PubMed  Google Scholar 

  78. Moser M, Hebert PR. Prevention of disease progression, left ventricular hypertrophy and congestive heart failure in hypertension treatment trials. J Am Coll Cardiol. 1996;27:1214–8.

    Article  CAS  PubMed  Google Scholar 

  79. Packer M, Poole-Wilson PA, Armstrong PW, ATLAS Study Group. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. Circulation. 1999;100:2312–8.

    Article  CAS  PubMed  Google Scholar 

  80. Bristow MR, Gilbert EM, Abraham WT, MOCHA Investigators. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. Circulation. 1996;94:2807–16.

    Article  CAS  PubMed  Google Scholar 

  81. Fox KM, Investigators EUtOrocewPiscAd. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–8.

    Article  CAS  PubMed  Google Scholar 

  82. Braunwald E, Domanski MJ, Fowler SE, et al. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351:2058–68.

    Article  CAS  PubMed  Google Scholar 

  83. Poole-Wilson PA, Lubsen J, Kirwan BA, et al. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): randomised controlled trial. Lancet. 2004;364:849–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Weber MD, Associate Professor FESC.

Ethics declarations

Conflict of interest

T. Weber, I. Lang, R. Zweiker, S. Horn, R.R. Wenzel, B. Watschinger, J. Slany, B. Eber, F.X. Roithinger and B. Metzler state that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, T., Lang, I., Zweiker, R. et al. Hypertension and coronary artery disease: epidemiology, physiology, effects of treatment, and recommendations. Wien Klin Wochenschr 128, 467–479 (2016). https://doi.org/10.1007/s00508-016-0998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-016-0998-5

Keywords

Navigation