
Abstract Proteome analysis of mature Arabidopsis

thaliana (Landsberg erecta ecotype) pollen was con-

ducted using two-dimensional gel electrophoresis and

mass spectrometry. A total of 960 spots were resolved

on pH 4–7 IPG strips and 110 distinct proteins were

identified from 150 spots analyzed. The identified

proteins were categorized based on their functional

role in the pollen, which included proteins involved in

energy regulation, defense-related mechanisms, cal-

cium-binding and signaling, cytoskeletal formation,

pollen allergens, glycine-rich proteins (GRPs), and late

embryogenesis abundant (LEA) proteins. These pro-

teins potentially play important roles in pollen function

at maturity and during subsequent germination and

tube growth. Some of the proteins identified were re-

lated to known pollen-specific transcripts, while some

were similar to proteins found in the seed. In this study,

66 new proteins were identified which were not re-

ported in two other recent studies on Arabidopsis

pollen, 17 proteins were common in all three studies,

and 35 or 26 proteins reported here had an overlap

with one or the other two studies. These differences

may be attributed to the methods of protein extraction,

spot selection for analysis, and the ecotype used. To-

gether, the three studies provide a broad spectrum of

the Arabidopsis pollen proteome.

Keywords Arabidopsis thaliana Æ Calcium-binding

proteins Æ LEA proteins Æ Pollen Æ Proteomics

Introduction

The pollen grain plays an essential role in sexual

reproduction of higher plants, with its primary function

of delivering sperm cells to the female gametophyte via

the formation of a pollen tube. In angiosperms, the

pollen grain is a relatively simple two- or three-celled

structure produced in the anther of a stamen. The

development of pollen is highly controlled and follows

a precise pattern of sporogenesis and gametogenesis,

with some differences between dicots and monocots at

the time of meiosis of pollen mother cells (Bedinger

1992; Palmer et al. 1992).

Genetic control of anther and pollen development

has been investigated in a number of species, including

Arabidopsis (Mascarenhas 1990). A large number of

genes controlling stamen and pollen development have

been identified using a variety of approaches, including

mutant isolation, mRNA expression, and in situ

hybridization (Sanders et al. 1999; McCormick 2004;

Scott et al. 2004). Both nuclear and cytoplasmic (mostly

mitochondrial) genes regulate pollen development

(Hanson and Betolila 2004), and approximately 20,000

genes are expressed during this process of which about

10% are specifically expressed in the pollen (Hamilton

and Mascarenhas 1997; Honys and Twell 2003).

Detailed transcriptomic analyses of Arabidopsis pollen
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have revealed that a majority of genes expressed in the

pollen have an overlap with sporophytic tissues, but

several genes are either enriched or specifically

expressed in the pollen (Becker et al. 2003; Honys and

Twell 2003; Pina et al. 2005). As well, the most

prevalent pollen-expressed genes are involved in

signaling, vesicle transport, and the cytoskeleton.

We extend these studies to analyze the Arabidopsis

pollen proteome and to classify proteins based on their

functional roles. An understanding of the pollen prote-

ome would provide insight into the relationship between

the transcriptome in mature pollen and certain special-

ized proteins that are readily available for pollen ger-

mination and tube growth. In addition, since the pollen

grain, like the seed, is a dispersal agent of higher plants

that is capable of becoming highly desiccated and dor-

mant, there are possible similarities between the pollen

(Holmes-Davis et al. 2005; Noir et al. 2005; Dai et al.

2006) and seed (Gallardo et al. 2001; Sheoran et al. 2005;

Vensel et al. 2005) that are reflected in the proteome.

Two articles have recently appeared on the Arabid-

opsis pollen proteome in which different methods of

protein extraction were applied to the Columbia eco-

type (Holmes-Davis et al. 2005; Noir et al. 2005). Al-

though some of the identified proteins are common

between these studies, many proteins are different in at

least two of the three studies. Taken together, the results

of these three independent investigations provide a firm

basis of technological and biological sampling and pro-

vide a broad analysis of the Arabidopsis pollen prote-

ome. This study also reports on a number of proteins

that were not reported earlier in Arabidopsis pollen.

Materials and methods

Plant material and growth conditions

Seeds of the wild type Arabidopsis thaliana ecotype

Landsberg erecta were originally provided by Dr. B.

Mulligan of the University, Nottingham, UK (Fei et al.

2004). Seeds were placed in 15 cm plastic pots con-

taining Tera-lite Redi-earth mix and were stratified by

exposing the pots to 15�C in the dark for 3 days. Plants

were subsequently grown at 22/20�C (day/night) and

16/8 h light/dark in a growth chamber. Light was pro-

vided by fluorescent tubes (Osram Sylvania Versailes,

KY, USA) at 120–150 lM m–2 s–1.

Pollen collection

Flowers at anthesis were picked daily, and placed in

open micro-centrifuge tubes overnight at 4�C to pro-

mote anther dehiscence. Flowers were then rinsed at

least four times with acetone in the tubes to obtain a

pollen suspension, which was transferred to fresh tubes

using a pipette. The pollen suspension was centrifuged,

the supernatant removed, and the pellet transferred

onto a glass slide. Pollen samples were checked under a

dissecting microscope, and pooled following the re-

moval of any debris. The purity of isolated pollen was

determined by light microscopy, and the pollen was

stored at –80�C until further use. Two separate batches

of clean and pooled samples were used for protein

extraction. Pollen viability of each of the two batches

of freshly colleted pollen was tested by in vitro pollen

germination test (Shivanna and Sawhney 1995) and it

ranged from 70 to 75%.

Protein extraction

The pollen (approximately 20 mg) was ground with a

glass rod in a micro-centrifuge tube with cold 10%

TCA and 1% DTT in acetone and kept at –20�C for at

least 2 h. The samples were centrifuged at 25,000 g for

20 min at 4�C, and the resulting pellet was washed by

suspending in acetone containing 1% DTT, incubated

at –20�C for 2 h, and centrifuged. The pellet was sus-

pended again in acetone, sonicated (3 · 15 s), and

centrifuged at 25,000 g. The pellet was vacuum dried

and total soluble proteins were extracted by dissolving

in iso-electric focusing (IEF) compatible buffer com-

prising 8 M urea, 20 mM DTT, 4% CHAPS, and 2%

ampholyte (pH 3–10). The solution was vortexed

extensively for 1 h at room temperature, centrifuged at

20�C for 20 min at 25,000 g, and the supernatant was

collected. The resulting pellet was resolubilized and

vortexed for 1 h, centrifuged at 25,000 g, and the

supernatant combined with that collected earlier. The

resulting protein samples were centrifuged again for

20 min at 25,000 g. Total soluble protein in the super-

natant was estimated with Bio-Rad protein assay

(Bio-Rad, Hercules, CA, USA) and used immediately

for further analysis or stored at –80�C for later use. The

protein content in the samples ranged between 95 and

120 lg/mg fresh wt.

Two-dimensional gel electrophoresis

Two-dimensional electrophoresis (2-DE) was con-

ducted according to Sheoran et al. (2005). IEF was

performed using the Multiphor II horizontal electro-

phoresis system and 13 cm Immobiline Dry Strips of

4–7 or 3–10 linear pH gradient (Amersham Pharmacia

Biotech, Uppsala, Sweden). The strips were re-

hydrated overnight in a solution containing 8 M urea,
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2% CHAPS, 20 mM DTT, 0.002% bromophenol blue,

2% IPG buffer (pH 3–10), and 600 lg of the protein

sample. IEF was carried out by applying a voltage of

250 V for 1 h, increasing to 3,500 V over 2 h, and

holding at 3,500 V until total of 75 kVh was obtained.

Following IEF, the strips were equilibrated for

15 min in an equilibration buffer containing 0.05 M

Tris–HCl (pH 8.8), 6 M urea, 30% (v/v) glycerol, 2%

(w/v) SDS, and 0.125% (w/v) DTT, followed by an-

other 15 min equilibration in the same buffer con-

taining 125 mM iodoacetamide without DTT. The

equilibrated strips were applied to vertical SDS-poly-

acrylamide gels (12.5% resolving 5% stacking) and

sealed with 0.5% agarose in SDS buffer containing

bromophenol blue. Electrophoresis was performed for

30 min at 25 mA, and then for 3 h at 40 mA in SDS

electrophoresis buffer containing 25 mM Tris base,

192 mM glycine, and 0.1% SDS, pH 8.3.

Gel staining

Gels were fixed in 50% ethanol with 10% orthophos-

phoric acid over-night, washed with water

(3 · 20 min), and stained in a Colloidal Coomassie

Blue G-250 (CCB) solution (0.12% CB, 10% ammo-

nium sulfate, 10% orthophosphoric acid, 20% metha-

nol; Candiano et al. 2004) for 2 days. After washing

with water, gels were scanned, annotated, and analyzed

for spot number and spot volume using Phoretix 2D

Image analysis software (UBI, Canada). Three repli-

cate gels were run for each of two different pollen

samples, and protein spots observed consistently in

replicate gels were selected for further analysis.

Mass spectrometry

Of the 960 spots observed consistently in stained gels,

150 spots were selected across the gel representing

different molecular weights and PIs for identification

by mass spectrometry. These spots were excised using a

Protean 2-D spot cutter (Bio-Rad), and placed in a 96-

well microtitre plate (Sigma, Milwaukee, WI, USA).

Excised proteins were automatically de-stained, dehy-

drated, reduced with DTT, alkylated with iodoaceta-

mide, and digested with trypsin using a MassPREP

protein digest station according to the recommended

procedures (Micromass, Manchester, UK). Mass

spectra of the resulting tryptic digests were acquired by

matrix-assisted laser desorption/ionization-time of

flight mass spectrometry (MALDI-TOF MS) on a

Voyager-DE STR (Applied Biosystems, Framingham,

MA, USA) as previously described (Sheoran et al.

2005). Five micro liter of each digest were dried to

approximately 1 ll on a MALDI target plate. One

micro liter of a-cyano-4 hydroxy-cinnamic acid matrix

solution (5 mg/ml in 0.1% TFA/75% acetonitrile) was

then added to each sample, and the mixture allowed to

air dry. The instrument was calibrated using trypsin

autolysis products (m/z 842.51 and 2,211.10) as internal

standards, or a mixture of des-Arg bradykinin (m/z

904.4681) and ACTH clip 18–39 (m/z 2,465.1989) for

close external calibration. Peak lists generated from

the tryptic digest spectra were submitted for peptide

mass fingerprinting (PMF) using MASCOT (http://

www.matrixscience.com/) search engine and NCBI

non-redundant protein database (November, 2005).

The following parameters were used for database

searching: carbamidomethylation of cysteine (fixed

modification); oxidation of methionine (variable mod-

ification); one missed cleavage (trypsin); and a mass

deviation of less than 50 ppm. For proteins that could

not be identified by PMF, the remainder of the digest

was analyzed by liquid chromatography-tandem mass

spectrometry (LC-MS/MS) using a capLC system and

Q-Tof Ultima Global mass spectrometer (Waters-Mi-

cromass, Milford, MA, USA) as previously described

(Sheoran et al. 2005). LC-MS/MS data were processed

using ProteinLynx v2.15 software (Micromass) and

searched against NCBI non-redundant protein data-

base using the MASCOT search engine. Proteins

identified with a MOWSE score greater than 70 (95%

confidence interval) are reported. Functional catego-

rization and sub-cellular localization of identified

proteins was performed using The Arabidopsis Infor-

mation Resource (TAIR) database (http://www.ara-

bidopsis.org).

Results and discussion

On average, 960 spots were observed on a 2-D gel

stained with CCB using pH 4–7 IPG strips (Fig. 1). Of

the 150 spots analyzed using both MALDI-TOF MS

and LC-MS/MS, 132 spots representing 110 distinct

proteins were identified by searching various publicly

available protein databases. Table 1 lists each identi-

fied protein by its gene index (gi) number and the

corresponding AGI gene locus, as obtained from

TAIR. In most cases, the calculated molecular mass

and pI of identified proteins were close to the theo-

retical values (Table 1). Multiple spots corresponding

to the same protein were also identified, as has been

reported in other proteomic studies. Deviations in

molecular mass and pI, and the presence of multiple

spots corresponding to the same protein, could be due

to a number of factors, including post-translational
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modifications (e.g., subsequent addition of phosphate,

methyl, or other groups), protein degradation, partial

synthesis of proteins during pollen maturation, or

protein translation from alternatively spliced mRNAs.

Pollen is an abundant source of protein, with protein

content ranging from 2.5 to 61% (Roulston et al. 2000).

Pollen proteins identified in this study are likely to be

predominent in the vegetative cell, since sperm cells

contain few organelles and a small cellular volume,

e.g., less than 0.05% of the pollen volume in Plumbago

(Russell and Strout 2005), and proportionately fewer

transcript copies (Xu et al. 1999; Engel et al. 2003).

Using the Gene Ontology annotation for Arabidopsis

(Berardini et al. 2004), the relative distribution of

identified proteins (Table 1) associated with various

cell components is presented in Fig. 2. Mitochondrial

proteins accounted for the largest single group

(approximately 29%), followed by proteins in the

cytosol (10%). Other cellular sources include ER

(7%), nucleus (6%), and cell wall (5%). About 19% of

protein products could not be assigned to a specific

cellular component. Noir et al. (2005) reported that the

largest protein fraction in the pollen of Arabidopsis

Columbia ecotype to be cytoplasmic (41%), with 40%

targeted to the endomembrane system. We observed

more pollen proteins associated with the cell wall than

did Noir et al. (2005), which may, in part, be due to

different methods of protein extraction.

Functional classification of identified proteins

The identified proteins (Table 1) were classified into

functional groups (Fig. 3) based on putative protein

functions (Berardini et al. 2004). The two major

groups of identified proteins in Arabidopsis pollen

were those involved in energy regulation (18%) and

those involved in defense- and stress- response

(20%). Other well-represented functional categories

were protein and other metabolism (9% each),

cytoskeleton (8%), transport (8%), and transcrip-

tional regulation (4%). We separated Ca2+-binding

and signaling (5%), pollen allergen (6%), and LEA

proteins (5%) into separate groups because of their

physiological significance in the pollen. The other two

recent studies (Holmes-Davis et al. 2005; Noir et al.

2005) also suggest that the majority of proteins

Fig. 1 Colloidal Coomassie
stained 2-DE gel (pH 4–7) of
mature Arabidopsis pollen.
Spot numbers indicated on
the gel were subjected to
MALDI and/or LC- MS/MS
analysis. Standard molecular
weight markers are shown on
the right
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Table 1 Arabidopsis (Landsberg erecta) mature pollen proteins identified by MALDI-TOF MS or LC-MS/MS

Spot
numbera

Gene index
number

AGI gene
locus

Protein identity kDa/pIb Sequence
coverage (%)

Mascot
score

1 7268300 At4g15530 Pyruvate phosphate dikinase family proteind 104.9/5.8 23 108
2 15222149 At1g49490 Structural constituent of cell wall 91.2/4.9 28 147
3 15222149 At1g49490 Structural constituent of cell wall 91.2/4.9 23 69
4 15222149 At1g49490 Structural constituent of cell wall 91.2/4.9 15 89
5 30681829 At2g22795 Unknown protein 82.0/4.3 45 354
6 30681829 At2g22795 Unknown protein 82.0/4.3 30 210
7 6681343 At3g09840 Cell division cycle protein 48c,d 89.3/5.0 65 413
8 1303695 At5g28540 Luminal binding protein (BiP)c 73.7/5.1 40 1,029
9 18414718 At4g16660 ATP binding 96.7/5.9 19 295
10 15293149 At1g11660 HSP protein 96.9/5.8 15 250
11 30697452 At5g61030 RNA binding/protein transporter 49.4/5.7 33 360
12 21553535 At5g60980 Ras-GTPase-activating protein (NTF2) 49.4/5.7 41 405
13 15223975 At1g77510 ATPDIL1-2/disulfide isomerase 56.6/4.9 22 196
14 11994364 At3g13930 Dihydrolipoamide acetyltransferase 60.1/7.5 13 76
16 30725440 At1g78900 Vacuolar ATP synthase subunit Ac,d 68.8/5.0 66 291
17 10177326 At5g65690 Phosphoenol- pyruvate carboxykinased 68.7/6.0 44 186
19 5107826 At5g25880 Putative malate oxidoreductasec,d 64.6/6.6 26 164
20 30696733 At5g56360 Calmodulin binding 74.1/4.7 10 98
21 15219086 At1g21750 ATPDIL1-1/disulfide isomerasec,d 55.8/4.8 50 965
22 30725696 At1g56340 Calreticulind 48.7/4.5 47 642
23 21555174 At1g09210 Calreticulind 48.4/5.9 54 611
24 23308191 At5g39570 Expressed protein (glycine rich protein) 43.6/4.7 42 178
25* 52354239 At1g79120 Hypothetical protein (DUF 860 domain) 47.5/6.0 27 67
26 13548325 At5g08670 ATP synthase beta-chainc 59.8/6.2 48 376
27 20148521 At1g23190 Phosphoglucomutased 63.1/5.9 67 261
28 20148521 At1g23190 Phosphoglucomutased 63.1/5.9 49 197
29* 15221044 At1g48030 Dihydrolipoyl dehydrogenase (F21D18028) 54.0/7.0 37 80
30 23308191 At5g39570 Unknown 43.6/4.7 34 273
31 1303695 At5g42020 Luminal binding protein (HSC-70)c 73.7/5.1 24 593
32 16323374 At5g44340 Tubulin beta-4 chainc,d 49.8/4.6 39 106
33 20453235 At1g65930 Isocitrate dehydrogenasec,d 45.7/6.1 44 179
35* 9294498 At3g17940 Aldolase 1-epimerase-like proteind 37.3/5.9 29 79
36 7529717 At3g52930 Fructose bisphosphate aldolasec,d 38.9/6.1 27 214
37 21555174 At1g09210 Calreticulind 48.4/4.4 22 143
38 21555174 At1g09210 Calreticulind 48.4/4.4 35 261
39 4309733 At2g18340 Similar to LEA protein 49.8/5.5 29 176
41 16226235 At2g36530 F1011.16/enolasec,d 35.0/5.2 10 115
42a 17939849 At5g08670 Mitochondrial ATP synthase beta subunitc 63.6/6.5 20 355
42b 28393806 At5g59370 Actin 4d 41.9/5.3 16 188
44 4586118 At4g12130 Putative protein (glycine cleavage T family/

aminomethyl transferase family protein)
40.5/8.7 32 176

45 877848 At1g55700 F20N2.12 (DC-domain containing protein) 77.8/6.5 13 177
46 24417274 At2g47470 Unknown protein (disulfide isomerase)c,d 39.8/5.8 34 320
47 4454472 At2g20760 Expressed protein (unknown protein) 37.2/5.9 25 102
48 12642848 At1g53240 Mitochondrial NAD-dependent MDH 36.0/8.5 31 111
49 8778388 At1g13890 F16A14.10 (Synaptosomal-associated protein) 29.1/5.8 47 392
50 8778388 At5g61210 F16A14.10 (Synaptosomal-associated protein) 29.1/5.8 47 442
51 21554576 At3g53750 Actin 3d 41.7/5.2 34 98
52 46931236 At4g36600 Similar to LEA protein 37.6/5.3 29 652
53* 42571269 At2g47470 Thioredoxin family proteinc,d 29.5/5.5 25 88
55* 20465723 At1g22450 Putative cytochrome-C oxidase subunit 21.4/4.3 23 76
56 1695717 At1g09080 Luminal binding protein 73.0/5.0 24 268
57 24496493 At5g02490 BiP chaperone BIP-L 75.3/4.9 12 362
58 24417274 At2g47470 Unknown protein (disulfide isomerase)c,d 39.9/5.8 39 475
59 24417274 At2g47470 Unknown protein (disulfide isomerase)c,d 39.9/5.8 18 122
60* 15226610 At2g47470 ATPDIL2-1 electron transporterc,d 40.0/5.8 35 144
61 8777485 At3g15020 NAD-dependent MDH 36.0/8.3 42 782
62 7769871 At1g53240 F12M16.14 (NAD-dependent MDH) 37.2/8.5 34 502
63* 2083278 At1g35720 Annexin 1d 37.8/5.2 66 125
64* 21280929 At5g16510 Reversiably glycolated polypeptided 38.6/4.9 39 75
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Table 1 continued

Spot
numbera

Gene index
number

AGI gene
locus

Protein identity kDa/pIb Sequence
coverage (%)

Mascot
score

65 7671424 At5g09650 Inorganic pyrophosphatase 33.6/5.7 10 98
66 8777485 At3g15020 NAD-dependent MDH 36.0/8.3 63 692
68 16173 At1g07890 L-ascorbate peroxidase (APX1)c,d 27.8/5.7 13 70
69 15225402 At2g45080 T14P1.11 (cyclin protein) 26.1/4.4 19 67
70 21554322 At1g07890 L-ascorbate peroxidasec,d 27.8/5.7 50 500
71* 62320230 At5g28540 Luminal binding protein 15.0/4.4 39 75
72* 62320230 At5g28540 Luminal binding protein 15.0/4.4 43 115
73* 22006985 At3g28340 Glycosyl transferase 41.0/4.4 30 115
74* 30690772 At2g47730 Glutathione S-transferase 6 (GST6)c,d 29.3/8.5 38 80
75a 2651722 At4g13560 Unknown protein (similar to LEA 3)d 11.6/6.7 45 295
75b 25090885 At3g06050 Thioredoxin reductasec,d 21.5/8.9 40 274
76 11270444 At3g55440 Triosephosphate isomerased 27.1/5.1 72 217
77 21554322 At1g07890 L-ascorbate peroxidasec,d 27.8/5.7 41 348
78 19310625 At2g21870 Putative ATP synthasec,d 27.6/6.3 30 475
80* 21553457 At3g10920 Putative (Mn) superoxide dismutasec 25.0/8.5 32 67
81* 19310625 At2g21870 Expressed protein (ATP synthase)c,d 27.6/6.3 35 336
82 21593056 At1g75270 Dehydroascorbate reductase 23.5/6.0 41 354
83 26452310 At5g27980 Embryonic abundant protein (LEA protein) 19.6/4.9 40 236
84 18403457 At3g22600 Lipid binding protein 21.1/6.1 12 88
86 60543359 At2g21060 Glycine-rich protein 2 (GRP-2) 19.4/6.3 44 179
87 21554322 At1g07890 L-Ascorbate peroxidase 1c,d 27.5/5.7 60 284
91 21593056 At1g75270 Dehydroascorbate reductase 23.4/6.0 23 770
92 196965 At2g47650 dTDP-glucose 4,6-dehydratasec 50.0/8.9 9 97
95 18387457 At3g06050 Antioxidant/peroxidasec,d 21.5/5.9 23 271
96a 20466103 At3g06050 Unknown (Alkyl hydroperoxide reductase)c,d 21.3/9.0 34 147
96b 6714406 At3g05930 Germin-like proteinc,d 23.1/8.8 15 135
97 20197320 At2g46860 Inorganic pyrophasphatased 24.9/5.5 31 185
99 26450755 At4g20780 Calcium-binding protein 21.2/4.6 38 301
101 16173 At1g07890 L-ascrobate peroxidase (APX1)c,d 27.8/5.7 24 170
102 30690243 At5g26667 Uridylate kinasec 23.3/6.4 28 178
103a 19310625 At2g21870 Putative ATP synthasec,d 27.6/6.3 30 457
103b 12083342 At1g16470 Multicatalytic endopeptidase 25.7/5.5 48 275
104 30690246 At5g26667 Uridylate kinasec 22.6/5.8 57 370
105a 17104709 At1g73230 RNA polymerase B transcription factor 3 18.0/5.9 58 262
105b 2497486 At5g26667 Uridylate kinasec 22.6/5.8 41 247
106 7267860 At4g11600 Phospholipid hydroperoxide glutathione peroxidase c,d 18.7/6.6 27 120
107 1303695 At5g42020 Luminal binding protein (HSC-70)c 73.7/5.1 10 151
108 14532850 At4g38680 Glycine-rich protein 2 (GRP-2) 19.5/5.6 10 82
109* 42570833 At2g20630 Protein phosphatase 2C putative 32.1/5.9 27 71
110 25403253 At1g24620 F21J9.28 (similar to polcalcin) 20.4/4.6 71 398
111 48310598 At4g02550 Pectin methylesterase inhibitor (PMEI) 20.0/4.9 21 76
112 25403253 At1g24620 F21J9.28 (similar to polcalcin) 20.4/4.6 27 110
113 20197312 At2g47730 Glutathione S-transferase c,d 19.8/5.3 28 195
114 11762128 At4g17530 Ras-related GTP-binding protein (RAB1C)c 24.8/5.8 23 72
115 26452507 At5g16450 S-adenosylmethionine 2-dimethylmenaquinone

methyltransferase
18.1/5.4 31 129

116 21593482 At4g24640 Pectin methylesterase inhibitor (Bnm1like protein)c,d 20.1/5.5 66 351
117 7267860 At4g11600 Phospholipid hydroperoxide glutathione peroxidasec,d 18.7/6.6 27 143
118 15221781 At1g24620 Calcium-binding pollen allergen (polcalcin) 20.4/4.6 27 110
119 16203 At5g20230 Blue-copper binding proteinc 20.2/4.7 9 89
120 17939851 At3g52300 Putative protein (ATP synthase D chain)d 19.6/5.1 11 83
121 21555349 At3g52300 F0-ATP Synthase D chaind 19.6/5.1 62 515
122a 21553949 At2g30410 Tubulin folding cofactor A 12.9/5.0 42 310
122b 21555349 At3g52300 F0-ATP Synthase D chaind 19.6/5.1 59 296
123 4914438 At2g21690 Glycine-rich RNA binding protein 8 16.5/5.6 39 270
124* 4914438 At2g21690 Glycine-rich RNA binding protein 8 16.5/5.6 51 72
125* 21537051 At1g26630 Initiation factor 5A-2 17.4/5.6 33 76
126 21553555 At2g22170 Lipoxygenase (dehydration stress—induced) 20.3/5.1 9 77
127 228408 At1g66400 Calmodulin 1 15.5/4.2 65 262
129 2021593095 At2g27710 60S ribosomal protein P2 11.4/4.8 23 198
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expressed in mature Arabidopsis pollen are involved

in energy and general metabolism, and in defense

against biotic or abiotic stresses. Studies of the

Columbia ecotype revealed three spots as Ca2+-

binding proteins and four spots as LEA proteins

(Noir et al. 2005), and none in data provided by

Holmes-Davis et al. (2005). Our study, however, re-

vealed 11 spots representing Ca2+-binding proteins

and six spots as LEA proteins. Interestingly, other

studies on the pollen proteome of Arabidopsis

(Holmes-Davis et al. 2005; Noir et al. 2005) or rice

(Dai et al. 2006) did not detect the presence of gly-

cine-rich proteins (GRPs), whereas we identified a

number of GRPs (see below). GRPs were also re-

ported in a study on Arabidopsis pollen coat prote-

ome (Mayfield et al. 2001), although they were

Table 1 continued

Spot
numbera

Gene index
number

AGI gene
locus

Protein identity kDa/pIb Sequence
coverage (%)

Mascot
score

130 21593328 At3g53750 Actin 11d 42.0/5.3 10 127
131 21593191 At1g47980 Dessication-related protein, putative 34.4/8.7 12 163
132 21553354 At2g21660 Glycine-rich RNA binding protein 7 16.9/5.9 78 310
133* 21618254 None Unknown protein 11.8/5.4 73 74
136 16225 At2g27030 Calmodulin 16.9/4.2 30 148
137 12323093 At3g62730 Dessication-related protein 70055–71849 33.0/8.3 12 153
138 9802567 At1g08840 F2203.32 (superoxide dismutase) 14.8/5.4 19 120
139 5103841 At1g15415 F9L1.37 (similar to LEA)d 10.4/5.9 44 74
140 16225 At2g27030 Calmodulin 16.9/4.2 30 196
141 16223 At1g66400 Calmodulin 16.9/4.2 30 188
142 21592567 At1g80230 Cytochrome C oxidase subunit 18.9/5.4 32 193
143 21536544 At2g19770 Profilin 4 14.1/5.0 17 153
144 21553773 At2g19760 Profilin 3/profilin 4 14.6/5.0 57 258
145 28827234 At4g13560 LEA-domain containing proteind 11.6/7.7 87 150
146 21537389 At4g29340 Profilin 3c,d 14.6/5.0 46 191
147 4115366 At1g46696 Unknown protein (DUF 601 conserved domain) 47.1/5.9 36 265
148 28827234 At4g13560 Unknown protein (containing LEA domain)d 11.6/7.7 45 149
149a 55978673 At1g04670 Hypothetical proteind 13.5/9.3 26 89
149b 71633 At3g53750 Actin fragmentd 42.0/5.3 13 73

a Protein spot numbers with asterisk (*) were identified by MALDI-TOF MS and the rest by LC-MS/MS analysis. The annotation of
spot number with ‘a’ and ‘b’ indicates that two different proteins were identified within that spot. No significant matches were found for
the spot numbers not listed in the table
b Molecular mass and pI of identified proteins
c Proteins reported by Holmes-Davis et al. (2005)
d Proteins reported by Noir et al. (2005)
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Cell wall
5%

Cytosol
10%

ER
7%

Nucleus
6%

Other
cellular

components
8%

Unknown
19%

Other
membranes

16%

Fig. 2 The cellular component classification of identified Ara-
bidopsis pollen proteins using gene ontology database at TAIR
(http://www.arabidopsis.org/). The percentage values indicate the
proportion of total number of proteins within that category
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5%
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6%

0ther
metabolism

9%

unknown
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Fig. 3 Functional classification of identified proteins from
mature Arabidopsis pollen. The percentage values indicate the
relative proportion of total number of proteins within each group
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different from those reported here. Further, about

27% of the polypeptides reported by Noir et al.

(2005) have unknown function, whereas the corre-

sponding figure is 8% for our study, as in Holmes-

Davis et al. (2005). These discrepancies could be due

to a number of factors including different methods of

protein extraction and separation, spot selection for

analysis, and different ecotypes used. That Ca2+-

binding proteins were not found by Holmes-Davis

et al. (2005) could be attributed to the low pI of

these proteins (4–4.5), which were likely excluded

from their gels. In any event, 15% of the proteins

involved in general metabolism were common in all

three studies.

Cytoskeletal proteins

A number of proteins were identified as actin and

profilins (spots 42b, 51, 130, 143, 144, 146, and 149b),

which have a role in cytoskeleton and cell organization.

A functional actin cytoskeleton is a prerequisite for

successful pollen germination and tube growth

(Drøbak et al. 2004; Wang et al. 2004). The actin

cytoskeleton coordinates the transport of vesicles

containing new cell wall materials and plasma mem-

brane to the tip of the growing pollen tube, acts as a

track system for cytoplasmic streaming, and appears to

be a target for calcium-mediated pollen tube growth

(Drøbak et al. 2004; Wang et al. 2004; Cardenas et al.

2005). Profilin is a key actin-binding protein involved

in pollen tube growth (Hepler et al. 2001) and its

presence has also been reported in mature Arabidopsis

(Columbia ecotype) (Holmes-Davis et al. 2005; Noir

et al. 2005) and rice pollen (Dai et al. 2006). Parallel

increases in actin and profilin were reported in devel-

oping anthers of rice (Kerim et al. 2003).

Calcium-binding proteins

Several proteins were identified as Ca2+-binding pro-

teins, including calmodulin, calreticulin (CRT), and

polcalcin (spots 22, 23, 37, 38, 99, 110, 112, 118, 127,

136, 140, and 141; Fig. 1, Table 1). Calcium plays an

important role in pollen germination and tube growth

(Malhó et al. 2000). There are complex Ca2+ homeo-

static mechanisms, including pumps, ion channels, and

Ca2+ buffers, involved in controlling Ca2+ transport

(Iwano et al. 2004). Spots 136, 140, and 141 were

identified as calmodulin, which appears to work with

cyclic nucleotides to regulate the opening of ion

channels, and is involved in Ca2+ signaling (Bouche

et al. 2005) and pollen germination and tube growth

(Golovkin and Reddy 2003). Spots 22, 23, 37, and 38

were identified as the high capacity, low affinity Ca2+-

binding protein CRT. This is an ER localized protein

that is important for ion buffering, and appears to

coordinate Ca2+ mobilization. CRT was also reported

in rice (Dai et al. 2006) and Arabidopsis pollen (Noir

et al. 2005), and in Petunia pollen tubes and styles

(Lenartowska, et al. 2002). The presence of CRT in

Arabidopsis flowers has been demonstrated, with a

proposed role in anther maturation and dehiscence

(Nelson et al. 1997), in addition to its role in Ca2+

binding, and as a molecular chaperone. A putative

Ca2+-binding protein (spot 99) and a calmodulin-

binding protein (spot 20) have also been identified, and

these may have unspecified roles in Ca2+ signal trans-

duction in the pollen during germination.

Synaptosomal-associated protein (SNAP-25) was

identified (spots 49 and 50) as a plasma membrane

associated protein involved in Ca2+ transport and the

activation and maintenance of store-mediated Ca2+

entry (Chieregatti et al. 2004). This protein has a role

in vesicle-mediated transport and protein-mediated

disease resistance (Collins et al. 2003). The presence of

a large number of Ca2+-binding proteins in the mature

pollen is in support of their requirement for germina-

tion and tube growth.

Defense-related proteins

Defense-related proteins include resistance proteins,

defense-regulated proteins, proteins involved in apop-

tosis, cell rescue, stress response, and detoxification.

Many of the plant responses to external factors, e.g.,

pathogen attack, are related to the production of

reactive oxygen species (ROS). Recent evidence sug-

gests that ROS function as cellular second messengers

that modulate many different proteins leading to a

variety of responses (Foyer and Noctor 2005). How-

ever, the excess production of ROS under biotic and

abiotic stresses causes oxidative damage to cellular

compartments (Apel and Hirt 2004). Plants combat

oxidative stress by inducing various protective enzymes

and anti-oxidants. In Arabidopsis pollen, a number of

protein spots involved in detoxification of ROS were

identified: i.e., superoxide dismutase (spots 80 and

138), ascorbate peroxidase (68, 70, 87, and 101), de-

hydro-ascorbate reductase (82 and 91), glutathione

transferase (74 and 113), phospholipid hydroperoxide

glutathione peroxidase (106 and 117), lipoxygenase

(126), and alkyl hydroperoxide reductase (95 and 96a)

(Table 1). All these enzymes are known to play a

crucial role in oxidative stress and the ascorbate-

glutathione cycle in plants (Chew et al. 2003), and their

presence in the pollen may provide protection against
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oxidative stress. Most of these enzymes were also re-

ported in Arabidopsis (Columbia ecotype) (Holmes-

Davis et al. 2005; Noir et al. 2005) and rice pollen

(Dai et al. 2006).

Several luminal binding proteins (BiP, spots 8, 31, 56,

57, 71, 72, and 107), and protein disulfide isomerases

(PDI, spots 13, 21, 46, 53, 58, 59, and 60) belonging to the

thioredoxin family, were also identified. These proteins

are localized in ER and are known as molecular chap-

erones involved in proper protein folding, a necessary

process for protein transport. Under stress, the folding

or assembly of proteins is disordered and this is associ-

ated with enhanced expression of genes such as BiP and

PDI (Koizumi et al. 2001). PDI has been implicated in

fungal pathogen resistance in wheat (Ray et al. 2003).

The presence of PDI and BiP in Arabidopsis and rice

pollen (Dai et al. 2006) may reflect their role in stress

tolerance during pollen maturation.

Protein phosphatase 2C, an enzyme that belongs to

a class of ubiquitous and evolutionarily conserved

serine/threonine protein phosphatases, was identified

(spot 109). This enzyme acts as a negative regulator of

stress/abscisic acid (ABA) signaling (Zhang et al.

2004). Since ABA is known to play a role in seed and

bud dormancy (Zeevaart and Creelman 1988), protein

phosphatase 2C may be important for breaking pollen

dormancy at the time of germination. Protein spots 131

and 137 were identified as desiccation-related proteins

and spot 10 as heat shock protein. Since the pollen

grain is an extremely desiccated structure at maturity,

these proteins may serve to protect the cytoplasmic

contents in the pollen. Desiccation-related proteins

were also reported in the Arabidopsis Columbia eco-

type pollen (Noir et al. 2005).

A number of LEA-like proteins or proteins con-

taining the LEA domain were identified in Arabidopsis

pollen (spots 39, 52, 75a, 83, 114, 139, and 148). LEA

proteins have been shown to accumulate during seed

maturation, and their expression has been linked to the

acquisition of desiccation tolerance. Many LEA pro-

teins are induced by cold or osmotic stress, or by exog-

enous ABA, or are expressed constitutively (Wang et al.

2003). Though the precise function of LEA is not

known, recent transgenic studies suggest their roles in-

clude stress tolerance (Park et al. 2005) and protection

of enzyme activity and protein aggregation under water

stress (Goyal et al. 2005). LEA-like proteins in Ara-

bidopsis pollen may thus provide protection against

desiccation during pollen maturation in addition to

other unknown functions. LEA-like proteins were also

reported in one other study on Arabidopsis pollen (Noir

et al. 2005) and in lily pollen (Miki-Hirosige et al. 2004),

but not in rice pollen (Dai et al. 2006).

Another group of proteins identified in Arabidopsis

pollen were GRPs (spots 24, 86, 108, 123, 124, and 132;

Table 1). Three of these were identified as the RNA-

binding proteins AtGRP8 and AtGRP7, and a fourth

as the cell wall protein GRP2. GRPs have been

implicated in post-transcriptional regulation of gene

expression, including RNA processing, which is in-

volved in developmental regulation in plants (Sachetto-

Martins et al. 2000). The expression levels of many

GRPs have been shown to be up-regulated by various

stress conditions, particularly cold and salinity, and

they play an important role in defense (Kim et al.

2005). The presence of GRPs in Arabidopsis pollen at

maturity may, therefore, provide another shield against

environmental stresses. A group of lipid-binding GRPs

known as oleosins were reported in Arabidopsis pollen

coat (Mayfield et al. 2001).

Pollen allergens

Pollen grains are known to have a number of proteins

which act as allergens (Mohapatra and Knox 1996).

Spots 110, 112, and 118 were identified as polcalcins,

which are known to act as allergens in a number of

species in addition to their role in Ca2+-binding. Other

proteins identified in Arabidopsis pollen, e.g., profilins,

BiP, and calcium binding proteins, also act as allergens

(Radauer and Breiteneder 2006).

Energy-related proteins

A number of proteins identified were those involved in

energy conversion reactions. These proteins are mainly

associated with electron transport in addition to glycol-

ysis, pentose-phosphate-pathway, and TCA-cycle. The

pollen grain, like the seed, requires energy during ger-

mination and tube growth, and it appears that the ma-

ture pollen has this energy machinery in place at the time

of maturity. Many studies have shown the presence of

enzymes in pollen that participate in energy conversion,

general cell maintenance, and metabolism (Holmes-

Davis et al. 2005; Noir et al. 2005; Dai et al. 2006). The

Arabidopsis pollen transcriptome studies have also

shown a number of transcripts related to the enzymes

involved in energy metabolism (Honys and Twell 2003).

Other proteins

It is known that pollen germination is largely depen-

dent on translation of pre-synthesized mRNAs (Mas-

carenhas 1990). Therefore, translational control and

signal transduction play an important role in pollen

germination and tube growth (Honys and Twell 2003).
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Spot 125 was identified as translational initiation factor

5A-2 (eIF-5A 2), and spot 129 as 60S ribosomal protein

involved in translational elongation. These proteins

could, therefore, potentially be important for transla-

tion of stored mRNA during pollen germination. The

translation initiation factor 5A was identified in rice

pollen (Dai et al. 2006), and a putative translation

initiation factor transcript is known to be selectively

expressed in Arabidopsis pollen (Honys and Twell

2003). A number of proteins involved in protein

transport within the cell were also identified.

Spot 103b was identified as a proteosome multicat-

alytic endopeptidase known to eliminate damaged or

unneeded proteins and to participate in regulation by

targeting and degrading short-lived regulatory proteins

(Coux et al. 1996). Spots 111 and 116 were pectin

methylesterase (PME) inhibitors, which play an

important role in post-translational modification of

PME, and were also reported in other studies on

Arabidopsis and rice pollen (Holmes-Davis et al. 2005;

Noir et al. 2005; Dai et al. 2006). PME also has roles in

fruit ripening, microsporogenesis, pollen tube growth,

seed germination, and hypocotyl elongation (Pilling

et al. 2004).

Unknown proteins

Spots 5, 6, 25, 30, 47, 133, 147, and 149a, were identified

as hypothetical/unknown or expressed proteins from

Arabidopsis database, with no well-defined function.

Spot 47 contains a clathrin light chain domain, which is

a major vesicle coat protein. It is possible that this

protein might participate in vesicle formation during

pollen tube growth. The identified protein in spot 133

has no corresponding transcript in the database. A

large number of transcripts (Honys and Twell 2003)

and proteins reported in Arabidopsis and rice pollen

(Holmes-Davis et al. 2005; Noir et al. 2005; Dai et al.

2006) also belong to the group with unknown function.

Many Arabidopsis pollen proteins are similar

to pollen transcripts

Arabidopsis pollen transcriptome studies reported that

approximately 10% of transcripts are pollen-specific

(Honys and Twell 2003). Our proteome analysis has

shown that 12% of the identified proteins were pollen-

specific, i.e., actin, profilins, calmodulin, initiation fac-

tor 5A, and a hypothetical protein, based upon their

corresponding pollen specific transcripts. Thus, in

addition to the presence of transcripts, a number of

proteins needed for germination and tube growth are

in place at the time when pollen is released from the

anther. Many of the proteins involved in energy and

defense-related mechanisms, including stress related

proteins, were also similar to the reported transcripts

(Honys and Twell 2003; Pina et al. 2005). However, the

frequency of occurrence of abundant proteins has an

inverse relationship with the transcript level (Holmes-

Davis et al. 2005).

Arabidopsis pollen has a number of proteins similar

to those in seeds

The pollen grain at maturity, like the seed, is a dor-

mant, desiccated structure and both are dispersal

agents in higher plants. Although the pollen grain is a

haploid gametophytic tissue and the seed a diploid

sporophytic tissue, it is interesting to note that the

pollen has a number of proteins similar to those in

seed. A comparison of the pollen proteome with that of

seed proteome of Arabidopsis (Gallardo et al. 2001),

wheat (Vensel et al. 2005), and tomato (Sheoran et al.

2005) indicates that many proteins, e.g., LEA, actin,

profilins, dismutase, dihydroascorbate reductase, eno-

lase, PDI, BiP, and ATP synthase, are common to both

these structures. LEA proteins likely play a role in

stress tolerance during desiccation of pollen and the

seed, and actin and profilins would contribute to the

formation of the cytoskeleton during germination and

growth of both these structures. Other similar proteins

and enzymes in the pollen and seed would be required

in metabolic processes. One of the striking differences

between the two structures was the lack of storage

proteins identified in the pollen, e.g., legumins, cruci-

firin, and vicilins, which are abundant in the seeds. The

transcriptome analysis of Arabidopsis pollen also re-

vealed the absence of storage protein-related tran-

scripts (Becker et al. 2003; Honys and Twell 2003; Pina

et al. 2005). This may be due to the fact that the seed,

upon germination, requires stored proteins for exten-

sive meristematic activity to form a young seedling

with a root and shoot system. In contrast, pollen ger-

mination and tube growth mainly involve extension of

the vegetative cell and, therefore, the requirement of

stored proteins may be limited.

Conclusions

This study on the proteome analysis of Arabidopsis

pollen reports on a number of proteins not reported

earlier, i.e., calcium binding proteins, GRPs, LEA-like

proteins, various isoforms of MDH, transcription factor,

initiation factor, protein phosphatase C, and profilin 4.

However, many proteins identified were similar to two

194 Sex Plant Reprod (2006) 19:185–196

123



other studies on Arabidopsis pollen. Our study was on

the Landsberg erecta ecotype in contrast to other studies

on the Columbia ecotype and this, along with differ-

ences in the methods of protein extraction and spot

selection, would explain the differences in the pollen

proteins between these studies. Nevertheless, together,

these three studies on the proteome of two different

ecotypes of Arabidopsis advance our knowledge on the

nature and function of proteins present in the pollen

grain at maturity. The proteome of Arabidopsis pollen

is, however, not yet fully analyzed and further work is

needed to identify additional proteins, especially the low

abundance proteins, and their roles in pollen.
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