Skip to main content

Advertisement

Log in

Short-term effects of air quality and thermal stress on non-accidental morbidity—a multivariate meta-analysis comparing indices to single measures

  • Students and New Professionals 2015
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983–1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117–1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013–1.0102; CAQI 1.0068, 95% CI: 1.0030–1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Analitis A et al (2008) Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol 168:1397–1408

    Article  CAS  Google Scholar 

  • Anderson BG, Bell ML (2009) Weather-related mortality how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20:205–213. doi:10.1097/EDE.0b013e318190ee08

    Article  Google Scholar 

  • Baccini M et al (2008) Heat effects on mortality in 15 European cities. Epidemiology 19:711–719. doi:10.1097/EDE.0b013e318176bfcd

    Article  Google Scholar 

  • Basu R, Feng WY, Ostro BD (2008) Characterizing temperature and mortality in nine California counties. Epidemiology 19:138–145. doi:10.1097/EDE.0b013e31815c1da7

    Article  Google Scholar 

  • Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B (2013) Time series regression studies in environmental epidemiology. Int J Epidemiol 42:1187–1195. doi:10.1093/ije/dyt092

    Article  Google Scholar 

  • Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–553

    Article  Google Scholar 

  • Breitner S, Wolf K, Devlin RB, Diaz-Sanchez D, Peters A, Schneider A (2014) Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: a time-series analysis. Sci Total Environ 485-486:49–61. doi:10.1016/j.scitotenv.2014.03.048

    Article  CAS  Google Scholar 

  • Buchholz S, Junk J, Krein A, Heinemann G, Hoffmann L (2010) Air pollution characteristics associated with mesoscale atmospheric patterns in northwest continental Europe. Atmos Environ 44:5183–5190. doi:10.1016/j.atmosenv.2010.08.053

    Article  CAS  Google Scholar 

  • Cakmak S, Hebbern C, Vanos J, Crouse DL, Burnett R (2016) Ozone exposure and cardiovascular-related mortality in the Canadian census health and environment cohort (CANCHEC) by spatial synoptic classification zone. Environ Pollut 214:589–599

    Article  CAS  Google Scholar 

  • Cochran WG (1950) The comparison of percentages in matched samples. Biometrika 37:256–266

    Article  CAS  Google Scholar 

  • de Freitas CR, Grigorieva EA (2014) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol. doi:10.1007/s00484-014-0819-3

    Google Scholar 

  • EEA (2013) Every breath we take - improving air quality in Europe. European Environment Agency. doi:10.2800/82831

    Google Scholar 

  • Firoz T, Chou D, von Dadelszen P, Agrawal P, Vanderkruik R, Tunçalp O, Magee LA, van Den Broek N, Say L, for the Maternal Morbidity Working Group (2013) Measuring maternal health: focus on maternal morbidity. Bull World Health Organ 91:794–796. doi:10.2471/BLT.13.117564

    Article  Google Scholar 

  • Gabriel KM, Endlicher WR (2011) Urban and rural mortality rates during heat waves in berlin and Brandenburg, Germany. Environ Pollut 159:2044–2050. doi:10.1016/j.envpol.2011.01.016

    Article  CAS  Google Scholar 

  • Gasparrini A (2011) Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw 43:1–20

    Article  Google Scholar 

  • Gasparrini A, Armstrong B (2013) Reducing and meta-analysing estimates from distributed lag non-linear models. BMC Medical Research Methodology 13 doi:10.1186/1471-2288-13-1

  • Gasparrini A, Armstrong B, Kenward MG (2012) Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med 31:3821–3839. doi:10.1002/sim.5471

    Article  CAS  Google Scholar 

  • Gasparrini A et al (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375. doi:10.1016/s0140-6736(14)62114-0

    Article  Google Scholar 

  • Grass D (2008) Assessing the Impacts of Air Pollution and Extreme Weather on Human Health in the Urban Environment. Columbia University

  • Guo Y, Barnett AG, Pan X, Yu W, Tong S (2011) The impact of temperature on mortality in Tianjin, China: a case-crossover design with a distributed lag nonlinear model. Environ Health Perspect 119:1719–1725. doi:10.1289/ehp.1103598

    Article  Google Scholar 

  • Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42:1593–1606. doi:10.1016/j.atmosenv.2007.10.048

    Article  CAS  Google Scholar 

  • Hajat S, Kosatky T (2010) Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health 64:753–760. doi:10.1136/jech.2009.087999

    Article  Google Scholar 

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72:320–338

    Article  Google Scholar 

  • Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. doi:10.1002/sim.1186

    Article  Google Scholar 

  • Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  Google Scholar 

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI--why another thermal index? Int J Biometeorol 56:421–428. doi:10.1007/s00484-011-0513-7

    Article  Google Scholar 

  • Krein A, Audinot JN, Migeon HN, Hoffmann L (2007) Facing hazardous matter in atmospheric particles with NanoSIMS. Environ Sci Pollut Res 14:3–4. doi:10.1065/espr2006.10.356

    CAS  Google Scholar 

  • Krein A et al (2008) Imaging chemical patches on near-surface atmospheric dust particles with NanoSIMS 50 to identify material sources. Water, Air, & Soil Pollution: Focus 8:495–503. doi:10.1007/s11267-008-9182-x

    Article  CAS  Google Scholar 

  • Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371. doi:10.1038/nature15371

    Article  CAS  Google Scholar 

  • Li L, Yang J, Guo C, Chen PY, Ou CQ, Guo Y (2015a) Particulate matter modifies the magnitude and time course of the non-linear temperature-mortality association. Environ Pollut 196:423–430. doi:10.1016/j.envpol.2014.11.005

    Article  CAS  Google Scholar 

  • Li L, Lin GZ, Liu HZ, Guo Y, Ou CQ, Chen PY (2015b) Can the air pollution index be used to communicate the health risks of air pollution? Environ Pollut 205:153–160. doi:10.1016/j.envpol.2015.05.038

    Article  CAS  Google Scholar 

  • Liu L et al (2011) Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis. Environ Health 10:51. doi:10.1186/1476-069X-10-51

    Article  Google Scholar 

  • Lokys HL, Junk J, Krein A (2015a) Future changes in human-biometeorological index classes in three regions of Luxembourg western-Central Europe. Advances in meteorology, doi:10.1155/2015/323856

  • Lokys HL, Junk J, Krein A (2015b) Making air quality indices comparable--assessment of 10 years of air pollutant levels in Western Europe. Int J Environ Health Res 25:52–66. doi:10.1080/09603123.2014.893568

    Article  CAS  Google Scholar 

  • Lynge E, Sandegaard JL, Rebolj M (2011) The Danish National Patient Register. Scandinavian journal of public health 39:30–33. doi:10.1177/1403494811401482

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments--application of the RayMan model. Int J Biometeorol 51:323–334. doi:10.1007/s00484-006-0061-8

    Article  Google Scholar 

  • Park AK, Hong YC, Kim H (2011) Effect of changes in season and temperature on mortality associated with air pollution in Seoul, Korea. J Epidemiol Community Health 65:368–375. doi:10.1136/jech.2009.089896

    Article  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrica 58:545–554

    Article  Google Scholar 

  • Perez L, Grize L, Infanger D, Kunzli N, Sommer H, Alt GM, Schindler C (2015) Associations of daily levels of PM10 and NO(2) with emergency hospital admissions and mortality in Switzerland: trends and missed prevention potential over the last decade. Environ Res 140:554–561. doi:10.1016/j.envres.2015.05.005

    Article  CAS  Google Scholar 

  • Plaia A, Ruggieri M (2010) Air quality indices: a review. Environmental Science and Bio/Technology 10:165–179. doi:10.1007/s11157-010-9227-2

    Article  Google Scholar 

  • Qian Z, He Q, Lin HM, Kong L, Bentley CM, Liu W, Zhou D (2008) High temperatures enhanced acute mortality effects of ambient particle pollution in the "oven" city of Wuhan, China. Environ Health Perspect 116:1172–1178. doi:10.1289/ehp.10847

    Article  CAS  Google Scholar 

  • Quantification of the Health Effects of Exposure to Air Pollution (2000). WHO, Bilthoven, Netherlands

  • Ren C, Williams GM, Morawska L, Mengersen K, Tong S (2008) Ozone modifies associations between temperature and cardiovascular mortality: analysis of the NMMAPS data. Occup Environ Med 65:255–260. doi:10.1136/oem.2007.033878

    Article  CAS  Google Scholar 

  • Ren C, Williams GM, Tong S (2006) Does particulate matter modify the association between temperature and cardiorespiratory diseases? Environ Health Perspect. doi:10.1289/ehp.9266

    Google Scholar 

  • Ruckerl R, Schneider A, Breitner S, Cyrys J, Peters A (2011) Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol 23:555–592. doi:10.3109/08958378.2011.593587

    Article  Google Scholar 

  • Smith KR et al (2013) Climate change 2014: impacts, adaptation, and vulnerability chapter 11. Human health: impacts, adaptation, and Co-benefits. IPCC, Cambridge and New York

    Google Scholar 

  • Stafoggia M et al (2006) Vulnerability to heat-related mortality: a multicity, population-based, case-crossover analysis. Epidemiology 17:315–323. doi:10.1097/01.ede.0000208477.36665.34

    Article  Google Scholar 

  • van den Elshout S, Leger K, Nussio F (2008) Comparing urban air quality in Europe in real time a review of existing air quality indices and the proposal of a common alternative. Environ Int 34:720–726. doi:10.1016/j.envint.2007.12.011

    Article  Google Scholar 

  • Vanos JK, Cakmak S, Kalkstein LS, Yagouti A (2015) Association of weather and air pollution interactions on daily mortality in 12 Canadian cities. Air quality, atmosphere, & health 8:307–320. doi:10.1007/s11869-014-0266-7

    Article  CAS  Google Scholar 

  • Vanos JK, Hebbern C, Cakmak S (2014) Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 Canadian cities. Environ Pollut 185:322–332. doi:10.1016/j.envpol.2013.11.007

    Article  CAS  Google Scholar 

  • Williams ML, Atkinson RW, Anderson HR, Kelly FJ (2014) Associations between daily mortality in London and combined oxidant capacity, ozone and nitrogen dioxide. Air quality, atmosphere, & health 7:407–414. doi:10.1007/s11869-014-0249-8

    Article  CAS  Google Scholar 

  • Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S (2012) Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect 120:19–28. doi:10.1289/ehp.1003198

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Research Fund in Luxembourg (4965163-FRESHAIR) and the health data provision by the “Research Data Centres of the Federal Statistical Office and the statistical offices of the Länder”. A. Gutleb is thanked for the help provided to identify the relevant diseases for our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Leona Lokys.

Ethics declarations

Ethical approval

Ethical approval to the use of hospital admission data was given by the “RDC of the Federal Statistical Office and the Statistical Offices of the federal states” together with the signature to statistical confidentiality in accordance with section 16 (7) of the Federal Statistics Act (BStatG). It is ensured by the contract not to be able to identify individual data from the published results.

Funding

The research reported was funded by the National Research Fund in Luxembourg (FNR) (4965163-FRESHAIR). The FNR was neither involved in the design of the study and collection, analysis and interpretation of data nor in writing the manuscript.

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokys, H.L., Junk, J. & Krein, A. Short-term effects of air quality and thermal stress on non-accidental morbidity—a multivariate meta-analysis comparing indices to single measures. Int J Biometeorol 62, 17–27 (2018). https://doi.org/10.1007/s00484-017-1326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1326-0

Keywords

Navigation