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Abstract Mountain pastures dominated by the pasture
grass Setaria sphacelata in the Andes of southern Ecuador
are heavily infested by southern bracken (Pteridium
arachnoideum), a major problem for pasture management.
Field observations suggest that bracken might outcompete
the grass due to its competitive strength with regard to the
absorption of photosynthetically active radiation (PAR). To
understand the PAR absorption potential of both species,
the aims of the current paper are to (1) parameterize a
radiation scheme of a two-big-leaf model by deriving
structural (LAI, leaf angle parameter) and optical (leaf
albedo, transmittance) plant traits for average individuals
from field surveys, (2) to initialize the properly parameter-
ized radiation scheme with realistic global irradiation
conditions of the Rio San Francisco Valley in the Andes
of southern Ecuador, and (3) to compare the PAR
absorption capabilities of both species under typical local
weather conditions. Field data show that bracken reveals a
slightly higher average leaf area index (LAI) and more
horizontally oriented leaves in comparison to Sefaria.
Spectrometer measurements reveal that bracken and Setaria
are characterized by a similar average leaf absorptance.
Simulations with the average diurnal course of incoming
solar radiation (1998-2005) and the mean leaf—sun geom-
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etry reveal that PAR absorption is fairly equal for both
species. However, the comparison of typical clear and
overcast days show that two parameters, (1) the relation of
incoming diffuse and direct irradiance, and (2) the leaf—sun
geometry play a major role for PAR absorption in the two-
big-leaf approach: Under cloudy sky conditions (mainly
diffuse irradiance), PAR absorption is slightly higher for
Setaria while under clear sky conditions (mainly direct
irradiance), the average bracken individual is characterized
by a higher PAR absorption potential. (~74 MJ m ™2 year ).
The latter situation which occurs if the maximum daily
irradiance exceeds 615 W m ? is mainly due to the nearly
orthogonal incidence of the direct solar beam onto the
horizontally oriented frond area which implies a high
amount of direct PAR absorption during the noon maxi-
mum of direct irradiance. Such situations of solar irradiance
favoring a higher PAR absorptance of bracken occur in
~36% of the observation period (1998-2005). By consid-
ering the annual course of PAR irradiance in the San
Francisco Valley, the clear advantage of bracken on clear
days (36% of all days) is completely compensated by the
slight but more frequent advantage of Sefaria under
overcast conditions (64% of all days). This means that
neither bracken nor Setaria show a distinct advantage in
PAR absorption capability under the current climatic
conditions of the study area.

Keywords Southern bracken - Setaria sphacelata - PAR
absorption - Two-big-leaf approach - Andes - Ecuador
Introduction

The Ecuadorian Andes are one of the major hot spots of
vascular plant diversity worldwide (Barthlott et al. 2007).
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At the same time, the natural forests in Ecuador suffer from
the highest deforestation rate (1.2% per year) in Latin
America (FAO 2001). In the eastern Cordillera, large areas
of tropical forest have been cleared by slash and burn for
gaining pastureland. On slopes of moderate inclination, the
Sorghum-like tillering Setaria sphacelata is grown in
monocultures. Our previous studies on Sefaria pastures
have shown that the current mode of pasture management
favors the growth of an extremely aggressive weed, the
tropical bracken fern Pteridium arachnoideum (Hartig and
Beck 2003). This process is particularly prominent in the
lower parts of the Rio San Francisco valley <2,400 m asl
(Fig. 1) where large areas (~68%) of former pastures have
been abandoned due to bracken infestation and the
concomitant supersession of the pasture grass (Beck et al.
2008a; Gottlicher et al. 2009). Unfortunately, the loss of
pasture usability boosts the land use pressure on the
remaining natural forest, threatening its unique biodiversity.

Consequently, bracken should be effectively controlled
to retain pasture productivity, but to date, the reason for its
competitive strength is not well understood. Some inves-
tigations suggest that spreading and growth of bracken
seems to be stimulated by burning (e.g., Page 1986; Cruz et
al. 2009). Other studies on bracken in England and Mexico
(Marrs et al. 2000a, b; Schneider 2004) point out that
bracken fronds cast shadow on underlying plants, thus
outcompeting understorey vegetation like grass tufts. Field
observations in the study area show that bracken accelerates
growth after burning which suggests that the shading of the
pasture grass by the fast emerging fronds seems to boost the
dominance of bracken after recurrent burning increasingly
(Hartig and Beck 2003). However, final evidence is still
lacking. Numerical simulation models encompassing radi-
ative transfer approaches (e.g., Pronk et al. 2007) might
help to unveil the importance of frond shadow for the
competitive strength of bracken in the study area. For spatial
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Fig. 1 The research area showing fractional cover by southern bracken
as derived from Landsat TM data with the probability guided spectral
unmixing technique (Géttlicher et al. 2009); BS experimental bracken
site and micrometeorological station, ECSF Estacion Cientifica San
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Francisco, ECSF met Meteorological station of the Estacion, 7S/ and
Cerro met are meteorological stations located at 2,660 and 3,180 m asl,
respectively. Grey shades indicate different bracken coverage per pixel,
white means bracken-free pixel
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applications, grid-cell based two-big-leaf models have been
proven to be computationally efficient (Wang and Leuning
1998) with good accuracy compared to more complex multi-
layer models (Zhang et al. 2001). The first research question
in order to estimate the competitive strength of species with
regard to radiation available for plant growth is if the two
competing species reveal different PAR (photosynthetically
active radiation) absorption potentials.

Consequently, the main objective of the current paper is
to compare the PAR absorption potential of the two
competing plant species, Setaria sphacelata and Pteridium
arachnoideum, as the basis for future research on growth
competition modeling using a numerical vegetation growth
model. The comparison is conducted by applying the
radiation scheme of a state of the art grid-based two-big-
leaf model (Dai et al. 2004; Thornton and Zimmermann
2007). Because the model is normally operated with default
parameters for broad groups of plant functional types
(broadleaf trees, grass, etc.), a proper parameterization with
structural and optical plant traits is required to adapt the
scheme to the competing species (e.g., Larocque 2002;
Wang et al. 2006b; Boulain et al. 2007). With regard to
structural plant traits, Lappi and Stenberg (1998), for
instance, stressed that simulation of PAR interception/
absorption is highly dependent on the relation of leaf
orientation and solar geometry.

Thus, the second goal of the current study is to adapt the
radiation scheme to the two species of interest by providing
the required structural and optical plant traits based on
extensive field surveys. The properly parameterized scheme
is then used to simulate the PAR absorption capabilities of
both species under the varying and realistic illumination
conditions of the study area in the Andes of southern
Ecuador.

Materials and methods
Study area and data

The current investigation is part of a multidisciplinary
ecological research project. The study area comprises parts
of the deeply incised valley of the Rio San Francisco in the
eastern range of the South Ecuadorian Andes in the vicinity
of the research station Estacion Cientifica San Francisco
(ECSEF, 3°58'18"S, 79°4'45"W, alt. 1,860 m asl; Fig. 1).
The station is situated between the provincial capitals of
Loja in the inner-Andean basin west of the main cordillera
and Zamora in the foothills of the eastern Andes. The core
area displayed in Fig. 1 encompasses an altitudinal gradient
from 1,800 to 3,200 m asl. A detailed description is given
in Bendix et al. (2006a) and Beck et al. (2008b). The
climate of the Rio San Francisco valley is perhumid

(Richter 2003; Bendix et al. 2008a, b). Important for the
radiation conditions is the high cloud frequency over the
entire year, especially at higher altitudes (Bendix et al.
2006b, 2008c). While the north-facing slopes of the valley
are covered by a species-rich natural mountain forest
(Brehm et al. 2008), the south-facing slopes have been
cleared by slash and burn for the acquisition of pasture land
where large portions of the lower terrain between 1,800 and
2,500 m are already infested or completely overgrown by
bracken (Fig. 1).

Long-term meteorological data for the current study were
available from the ECSF meteorological station located at
1,960 m asl (ECSF met in Fig. 1), the altitudinal level of the
bracken-infested pastures. At this station, global radiation
has been measured since 1998. Monthly means of global
radiation from 1998-2005 as presented in Bendix et al.
(2008a) were used in this study. Additionally, an experimen-
tal site (BS in Fig. 1) consisting of ten 10x 10 m plots with
different fractions of bracken and Sefaria was established in
2007 in the vicinity of the main meteorological station
(ECSF met). The site encompasses a micrometeorological
station that measures global radiation at 5-min temporal
resolution. Global radiation at both stations was measured
with the Kipp & Zonen CM3 pyranometer for the entire
solar spectrum (spectral range 305-2,800 nm).

Radiation scheme

To calculate PAR absorption by bracken and Setaria, the
radiation scheme of the two-big-leaf approach of Dai et al.
(2004) was applied. Generally, big-leaf approaches describe
the water and gas exchange of vegetation in a simple way
where the canopy is treated as one layer with a single
physiological and aerodynamic resistance to water /CO,
transfer. A big-leaf model generally encompasses (1) a
radiation scheme as discussed in this study, (2) a leaf model
accounting for the interaction of conductance and photo-
synthesis and the response of stomata to water vapor
pressure deficit and available soil water, and (3) a
parameterization of radiative conductance to solute the leaf
energy balance equation (Wang and Leuning 1998). The
two-big-leaf extension separates the whole canopy leaf area
into sunlit and shaded leaf portions and the canopy-average
PAR values are estimated for each leaf portion, which needs
the application of radiative transfer calculations between the
sunlit and shaded leaf fraction and the underlying soil
(Zhang et al. 2001). Species are represented in a two-big-
leaf models as a single plant with one sunlit and one shaded
leaf. Average traits (e.g., leaf albedo) that are representative
for the species are assigned to the model plant.

It is presupposed that the sunlit leaf receives both diffuse
and direct radiation while the shaded leaf receives diffuse
light only.
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The photon transport among the atmosphere, the sunlit
and shaded leaf area, and the ground is calculated by using
the two-stream approximation with single scattering and
uniform leaf orientation as presented in Dickinson (1983)
and Sellers (1985). This module is the central part of the
radiation scheme of Dai et al. (2004) which was used in the
current study. With regard to canopy albedo, Myneni et al.
(1992) showed that the accuracy of similar 1D radiative
transfer schemes is adequate in comparison to more
complex and computational expensive 3D approaches.
Also, the prediction of PAR provided reasonable values
when compared with a more complex multi-layer model
(Zhang et al. 2001).

The numerical solutions and all relevant equations of
the radiation scheme used in this study are already

Gu)=¢,+6, 5 ¢, =(05-0633- 5033 4°);

published in Dai et al. (2004) and will not be repeated
here in detail.

In the current study, the scheme is initialized by global
radiation data at hand so that the decomposition for the
direct, diffuse and PAR fraction is necessary.

On the plant level, the study focused on an average
individual of bracken and the pasture grass Setaria. PAR
absorption of the two species is strongly dependent on their
functional traits that have to be derived from field
observations to parameterize the radiation scheme properly.
The first plant trait (or model parameter) of importance is
the average leaf angle because it determines the leaf
orientation to the sun and thus radiation absorption. In the
radiation scheme, the average leaf projection G(u) is used
which is derived from (Dai et al. 2004):

¢, =0877-(1—-2-¢,) (1)

where u is the cosine of the solar zenith angle, ¢; and ¢, are
coefficients from the Ross-Goudriaan function (see Sellers
1985) and x represents the leaf angle distribution (1=
horizontal, —1=vertical, O=spherical leaf angle distribution)
that have to be measured for representative individuals of
bracken and Setaria in the experimental plots. It is obvious
that the leaf orientation in relation to the solar angle
determines drop shadow on shaded leaves and thus, the
sunlit and shaded fractions of leaf area (see Dai et al. 2004).

The second important trait is the spectral leaf albedo
because it determines the proportion of solar radiation
remaining available for absorption and transmission. For
instance, the direct incident beam radiation absorbed by
leaves at canopy depth x per unit leaf area index L
(excluding scattering) is calculated in the scheme as (Dai
et al. 2004):

Iy = (1 —w) - kb -exp(—kb - xL) - I (2)

where I,y is the incident direct beam radiation above the
canopy, kb the direct beam extinction (see Dai et al. 2004)
and the leaf scattering coefficient w is:

w=ca+7 (3)

with « is the spectral leaf albedo (second parameter) and 7
the spectral leaf transmittance as the third important
functional trait, determining the transmission of radiation
to the shaded leaf area fraction and the underlying bare soil.
Consequently, both optical parameters have to be derived
from field measurements of representative individuals of
bracken and Setaria. Equation (2) also uses the leaf arca
index that is available for PAR absorption. Thus, also the
average leaf area index is a model parameter that has to be
derived from field observations.
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On the soil level, soil spectral albedo has to be measured
because it determines the backscattered direct and diffuse
radiation fractions in direction of the green phytoelements
which are generally available for PAR absorption, increas-
ing with soil albedo (Nouvellon et al. 2000).

Decomposition of global radiation data

The two-big-leaf scheme requires the diffuse and direct
fractions of solar radiation as input. Because only global
radiation was measured at the meteorological stations, we
used an empirical decomposition function to partition
incident solar radiation in its diffuse and direct fractions.
Generally, such functions are based on the diffuse fraction
of radiation (k') and the clearness index (k7). The clearness
index (kt) is the ratio of incoming radiation at the earth
surface (/) to the radiation at the top of the atmosphere on
a horizontal surface (I704).

kt :IO/ITOA (4)

Diffuse I, and direct [, radiation incident above the
canopy is then derived by:

Lo =Io - k' (5)

Lo=1I-(1—k" (6)

where [, is the incident global radiation above the canopy.

Empirical radiation decomposition functions are generally
more or less site dependent. To find the most appropriate
function for the San Francisco valley, six published functions
are examined. Erbs et al. (1982) used data sets from U.S.
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locations to formulate a piecewise regression function that
has been widely and successfully used in other parts of the
world (Elminir 2007). A modified version of Erbs function
was recently proposed by Wang et al. (2006a). Two versions
of a function of Boland et al. (2001, 2008) for Australia
yields lower fractions of diffuse radiation at a high clearness
index, which could principally apply to situations in high
elevations in the absence of clouds. A function taking annual
seasonality into account was determined for southeast Brazil
by Oliveira et al. (2002). Maduekwe and Chendo (1994)
presented a numerical solution with solar elevation as a
second predictor for the diffuse fraction. Figure 2a shows the
long-term averaged (1998-2005) daily course of diffuse
radiation calculated from the long-term incident global
radiation at the ECFS meteorological station. The diffuse
fraction as a function of the clearness index is also displayed
(Fig. 2b). The data show that the fraction of diffuse radiation
in the study area is generally high. In the early morning and
late afternoon hours, almost the only radiation present is
diffuse, while around noon, direct irradiance accounts for

approximately one third . The dominance of diffuse radiation
is mainly due to the overall high cloudiness of ~80% over
the day and the year in the San Francisco valley (Bendix et
al. 2006b, 2008c¢).

The function of Boland et al. (2001) (BSL), with the solar
apparent time as predictor (BSLa at 0800 and BSLb at
1700 hours in Fig. 2b), results in relatively strong deviations
in the afternoon. Oliveira’s function (OESM), which summa-
rizes the winter (OESMa) and summer (OESMb) regres-
sions, gives the lowest diffuse radiation fraction. The other
four decomposition functions which comprise Boland et al.
(2008) (BRB) and Erbs et al. (1982) (EKD) give more or
less identical daily courses. The difference between the mean
of these functions and Oliveira’s solution varies between —1
and +22% of the global radiation. For the current study, we
used the modified Erbs’ function (EKD2) because it
considers the increase of diffuse radiation on lower solar
elevation (see Fig. 2b where EKD2 is calculated for a solar
elevation of 15°). The diffuse fraction &’ is calculated in a
two-step procedure as follows:

022 < k<08 (7)

1-0.09 -kt 0<k<022
k=1< 09511 —0.1604 - kt + 4.388 - kt* — 16.638 - ki* + 12.336 - kt*
0.165 08 <kt <1.
k
k’:* 8
(1—k)-u+k ®)

where k' is the diffuse fraction of radiation modified due to
solar geometry with the cosine of solar zenith angle p.

To obtain the PAR fraction from global radiation, a
conversion factor of 0.48 is generally multiplied by 7, but
Zhang et al. (2000) and Lee and Hernandez-Andrés (2005)
showed that the PAR fraction varies particularly in the
presence of clouds. A slight increase of the PAR fraction
from clear to cloudy sky due to larger forward scattering
was observed by Papaioannou et al. (1993) and Roderick
et al. (2001). Tsubo and Walker (2005) considered clouds
by applying the clearness index as predictor for the PAR
fraction. Consequently, this function addresses best the high
cloud frequency in the San Francisco valley and is therefore
used in the current study:

Ipar = (0.121 - k£* — 0.334 - kt + 0.613) - Iy (9)

Field observations of plant and soil parameters

The two required structural plant parameters, the leaf area
index and the leaf to ground angles, were measured with a
LICOR LAI-2000 plant canopy analyzer. Leaf area index

and leaf angles were taken for representative Sefaria and
bracken individuals. A total of 24 measurements for each
species were conducted between October 2007 and March
2008 on the experimental site (BS in Fig. 1). Canopy leaf
angle was determined as mean tilt angle (MTA) (see Peri et
al. 2003) that, however, is in good agreement with directly
derived mean leaf angles (Antunes et al. 2001). Mean tilt
angle orientation of measured foliage is converted to the
leaf angle parameter x (Eq. 1) by:

X, = cos(MTA) — sin(MTA) (10)

The two optical plant traits (leaf albedo and transmission)
and soil albedo were measured with the field spectrometer
Tec5 HandySpec Field 14 during late 2007 and early 2008.
The instrument encompasses a Zeiss MMS 1 NIR enhanced
(310-1,100 nm, dA=3.3 nm) and a Zeiss Plangitter PGS
NIR 1.7 (960-1,690 nm, dA=1.5 nm) sensor. For reflection
measurements, fresh leaves of representative individuals
were collected and inserted in a wooden frame to normalize
the measurements to a leaf area index of 1. Average values
were calculated from three measurements of each species.
Topsoil samples were taken from the experimental bracken
site, representing the soil under bracken and grass. Spectral
integration of the data was conducted for PAR (<700 nm)
and NIR (=700 nm).
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Fig. 2 a Average diurnal course of global and derived diffuse
radiation at ECSF met station (1998-2005). b The diffuse fraction
from six decomposition functions is also shown as a function of the
clearness index (bottom). For abbreviations, see text

Results
Derived plant and soil traits

The observed values of LAI and x for representative
individuals of Setaria and bracken are presented in Table 1.
They show that LAI and x (indicated by the mean tilt
angle) differ between the samples and thus, the observation
situation. However, the principle of the two-big-leaf
approach only permits one average individual per species.
Thus, the plants selected in the field survey which are
presented in Table 1 are chosen to properly represent an
average individual. The calculated average structural plant
traits are then assigned to the average Setaria and bracken
individual used by the radiation scheme which is applied in
the next subsection. The same holds for the optical traits
presented in Table 2.

With regard to the field data of structural plant traits
presented in Table 1, the average leaf are index of bracken
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(2.94) is higher than that of Setaria (2.4). The standard
deviation reveals that the LAI of bracken is characterized
by a slightly higher variation in comparison to Setaria.

Additionally, Table 1 points to a clear difference in leaf
angle orientation towards more vertical leaves for the
Setaria tufts and more horizontally oriented leaf blades
for bracken where the span of leaf angles is generally
higher for bracken than for Setaria. The grass reveals a
mean leaf angle of ~59° and an average leaf angle
distribution parameter of x= —0.37 which clearly confirms
the more vertical orientation of the grass stalks. MTA
values and the low standard deviation show that the angular
distribution of Setaria culms is almost unimodal. With
regard to bracken, MTA seems to points to a bimodal
distribution. Bracken fronds are composed of a long vertical
petiole and a nearly triangular tripinnate lamina. Emerging
fronds, whose lamina are still unfolded, have not been
included in the study. Unfolding of the leaf blade starts
when it turns from a vertical position into an angle between
40 and 50°. During further unfolding of the lamina, the leaf
blade approaches a more horizontal orientation (MTA of 0—
8°). Because an average fern canopy consists of young and
mature leaves, the average individual of the two-big-leaf
approach must consider both representations which is
warranted by the mean leaf angle parameter of x=0.48.

The albedo data gathered during our field surveys show
that both plant species exhibit a marked red edge spectrum
of green vegetation with a slightly enhanced reflectance in
the green waveband (Fig. 3).

In contrast, the topsoil reveals the typical, almost linear
increase of reflectance towards the near infrared. Bracken
contrasts with Sefaria by a lower reflectance in the PAR
and a higher reflectance in the NIR. Transmittance of
bracken fronds is slightly higher than that of Sefaria over
the whole spectrum. The integrated optical traits for the
PAR spectral range (300-700 nm) as derived from the
measurements of the field spectrometer for both species
(Setaria and bracken) are presented in Table 2. Average
integrated PAR reflectance of Setaria (11.7%) is higher
than bracken PAR albedo (7.4%). At the same time,
integrated PAR transmittance of Setaria (1.5%) is lower in
comparison to bracken (3.7%), resulting in a slightly higher
absorptance of 2.1% for bracken which might potentially
favor bracken with regard to photosynthesis.

Simulated PAR absorption capability

The first quantity that determines the PAR absorption
capacity is the species-specific leaf-sun geometry which
is mainly influenced by the average leaf angle parameter
from Table 1. Figure 4 demonstrates the changing illumi-
nation situation for the average individuals of Setaria and
bracken depending on solar elevation in relation to leaf
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Table 1 Leaf area index (LA)
and mean tilt angle (MT4) of 24 ~ Sample Setaria Bracken
representative measurements of
Setaria sphacelata and bracken LAI (m* m™?) MTA (deg.) LAI (m* m™?) MTA (deg.)
(Pteridium arachnoideum) on
the experimental site 1 1.31 58 1.38 3
2 1.79 73 1.51 40
3 1.32 62 1.65 49
4 1.75 60 1.41 0
5 1.38 61 1.88 8
6 1.76 54 1.40 31
7 1.99 57 2.17 28
8 3.84 45 2.24 46
9 242 59 2.87 0
10 3.20 59 3.21 36
11 2.76 42 2.85 0
12 3.95 45 4.76 40
13 1.54 76 3.53 40
14 1.50 76 4.08 42
15 2.42 63 2.23 40
16 3.00 65 2.60 0
17 2.71 59 5.27 41
18 2.04 62 3.97 40
19 1.52 75 2.65 13
20 1.72 63 3.27 37
21 434 51 4.88 0
22 3.41 57 3.95 36
23 2.76 60 3.24 0
24 3.11 53 3.50 0
Average 2.40 59.79 2.94 23.96
lo 0.90 9.14 1.15 18.87
Average X -0.37 0.48

orientation. The sunlit and shaded leaf fractions of bracken
with its more horizontally oriented fronds run inversely to
Setaria with its more upright leaves. At higher solar
elevations (>28°) around noon ( i.e., at solar zenith lower
than 62°) bracken shows a smaller sunlit leaf fraction in
comparison to Setaria because the sunlit bracken frond
casts shadow on the underlying frond area due to the
horizontal frond orientation. In contrast, shadowing around
noon is clearly reduced in case of the vertically oriented
leaves of Setaria. The situation changes in times of lower
sun elevation (morning, evening) when cast shadow is
preferentially caused by vertically oriented leaves. Then,
bracken is favored in receiving direct radiation.

However, the sunlit and shaded leaf fraction must be scaled
by the species-specific leaf area index (Table 1) of the average
individuals to complete the view on leaf—sun geometry effects
on PAR absorption potential. By doing so, Setaria sunlit leaf
area exceeds that of bracken at solar zenith angles <55°
(Fig. 5). The shift of the inversion point of the sunlit leaf
fraction (see Fig. 4: 62° solar zenith angle) is an effect of the
slightly greater LAI of the average bracken individual. This
also explains the fact that the shaded leaf area of bracken
exceeds the shaded leaf area of Setaria at all solar elevations.

Summarizing Figs. 4 and 5 could suggest that Setaria
receives more direct radiation around noon in comparison
to bracken. However, the amount of PAR absorption is not

Table 2 Integrated optical traits

(PAR) of Setaria sphacelata, Setaria Bracken Bare soil
bracken (Pteridium arachnoi-

deum) and bare soil. (Source: Reflectance (%) PAR (400 — 700 nm) 11.7 7.4 10.7
field observations with Handy- Transmittance (%) PAR (400 — 700 nm) 1.5 3.7 -

Spec) Absorptance (%) PAR (400 — 700 nm) 86.8 88.9 89.3
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Fig. 3 Partitioning into reflectance (albedo), transmittance and
absorptance of spectral radiation incident on Setaria sphacelata,
Pteridium arachnoideum (as an average of three representative
samples, LAI=1) and bare soil. The traced line represents the division
between visible (PAR) and near infra red (>700 nm)

only a function of sunlit and shaded leaf area but is strongly
dependent on (1) the resulting angle of incidence on the
leaves for direct beam radiation, (2) the relation of direct/
diffuse irradiance at the top of the canopy, and (3) the
optical leaf traits. With regard to (1), a more perpendicular
angle of incidence would be reached at low sun elevations
for Setaria with its vertically oriented leaves when the
sunlit leaf area is clearly reduced. In contrast, bracken
shows the highest sunlit leaf area around noon when the
solar rays are shining nearly perpendicular onto the
horizontally oriented canopy fronds.

To address all governing factors (1-3) under realistic
environmental conditions of the Rio San Francisco valley, a
simulation was conducted which was initialized with the long-
term averaged diurnal course of global irradiance (1998—
2005) at the ECSF meteorological station (Fig. 1). The
decomposition of global radiation was conducted by apply-
ing Egs. 4-9. The results depicted in Fig. 6b clearly reveal
that PAR absorption of bracken (4.2 MJ m 2day ") is fairly
equal to PAR absorption of Setaria (4.5 MJ m *day .

leaf fraction

5 15 25 35 45 55 65 75 85
solar zenith [°]

...... sunlit bracken
------ shaded bracken

sunlit Setaria
shaded Setaria

Fig. 4 Sunlit and shaded leaf fractions of bracken and Setaria for
solar elevations between 5 and 85° (solar elevation=90°-solar zenith)
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------ shaded bracken

Fig. 5 Leaf area index (m®>m 2) of sunlit and shaded leaves of
bracken and Sefaria as depending on the solar zenith angle (solar
elevation=90°-solar zenith)

Integrated over the day, the difference (APAR) amounts to
just 0.3 MJ m 2day '. At first glance, this result is
unexpected because considerable differences in sunlit and
shaded leaf area of the two species exist (Fig. 6a).

a

7 8 9 10 M 12 13 14 15 16 17 18
LST [h]

LAl sunlit Setaria

LAl shaded Setaria

------- LAl sunlit bracken
------- LAI shaded bracken

600 80
— L 70
500 e S
400
&
£ 3001
z

200+

100 1

LST [h]

—— = — solar elevation

PAR Setaria

........ PAR bracken global radiation

Fig. 6 a Leaf area indices (m”m ) of sunlit and shaded portions of
the leaves of bracken and Setaria in the course of a day with regard
to the average leaf-sun geometry of the study area. b Annual average
of the diurnal course of irradiance at the ECSF meteorological station
(1998-2005; Bendix et al. 2008a), sum of absorbed direct and diffuse
PAR by sunlit and shaded leaves of bracken and Setaria plotted on the
left ordinate axis and typical solar elevation in degrees on the right
ordinate axis
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This effect is most likely the result of the predominantly
diffuse solar radiation available in the San Francisco valley
due to the high cloudiness. The reason is that the available
direct radiation at an inclined surface (leaf), following
Lambert's law, depends on the incident angle of the light
beam as a combination of leaf angle and position of the sun,
but this angular dependence is not applicable to isotropi-
cally distributed diffuse radiation. Consequently, the
species-specific differences in sunlit and shaded leaf area
are not as crucial as they should be under clear sky
conditions. As a result, bracken can compensate for the
lower fraction of sunlit frond area by its slightly higher
absorption coefficient and the total LAI exceeding that of
Setaria (Tables 1 and 2). Thus, the total radiation surplus of
Setaria yields not more than 0.3 MJ m 2 day ' (4.2 MJ m 2
day ! bracken, 4.5 MJ m * day ' Setaria) in comparison to
bracken over an average day in the Rio San Francisco
valley.

To unravel the role of diffuse radiation on the PAR
absorption potential, simulations were conducted for a
typical sunny (5 December 2007) and cloudy (5 January
2008) day (Fig. 7).

The cloudy day with dominating diffuse irradiance
reveals that Sefaria has a slightly higher PAR absorption
over the day (2.1 MJ m 2 day ") that exceeds that of

05 Dez 2007, clear day
600

bracken
500
400
&
£ 3004
=
200
100
0
7
600
Setaria
500
400
&
£ 300+
=
200
100
0

LST [h]
absorbed  _______._.. absorbed
PAR sunlit PAR shaded

bracken by 9.5% (or 0.2 MJ m * day ') (Fig. 7, right).
However, it is striking that this potential growth advantage
of Setaria is abolished during a sunny day with a great
portion of direct solar irradiance around noon (Fig. 7, left).
On such a day, bracken absorbs 8.5 MJ m 2 day ', which is
16.4% (or 1.2 MJ m > day ') more than total PAR
absorption by Setaria. The reason of this inversion is
illustrated in Fig. 8.

On sunny days, the major gain of PAR absorption by
bracken as compared to Sefaria is achieved by the
absorption of incident direct beam radiation (I, direct)
only. Here, the geometric configuration mentioned earlier
takes effect. Fairly perpendicular incidence of the direct
solar beam around noon (sun elevations 60-80°) onto
nearly horizontally oriented bracken fronds provides the
markedly higher direct radiation gain as compared to the
nearly vertically oriented Sefaria leaves. Even if PAR
absorption of diffuse solar radiation (/,) and scattered
diffuse radiation (/) is higher for Setaria on the sunny
day, this cannot compensate for the higher gain of direct
beam PAR absorption by bracken fronds.

To test the PAR absorptance for different sunny and
cloudy weather situations potentially occurring in the San
Francisco valley, the ideal relative diurnal course of
irradiance as measured on 5 December 2007 was taken

05 Jan 2008, overcast day
160

bracken
140

120

Setaria
140

120

— 100
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Fig. 7 PAR absorption of southern bracken and Setaria for (left) a sunny day (5 December 2007) and (right) a typical overcast day (5 January
2008). Radiation data for model initialization are taken from the micrometeorological station at the bracken experimental site (BS in Fig. 1)
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bracken

I (direct)

1o (diffuse)

Setaria

Fig. 8 Different PAR components absorbed by the sunlit canopy of bracken (leff) and Setaria (right) on the sunny day (Fig. 7, left), 5 December

2007, based on the radiative transfer scheme

and applied to incrementally increased daily radiation
maxima ranging from 100 to 1,000 W m 2 (with an
increment of 100 W m™?). Ten simulations were conducted
with the radiation scheme based on the synthetically
generated irradiation data. The decomposition of the
generated diurnal data of global radiation by using
Egs. 4-9 leads to an increase of the direct radiation fraction
with increasing radiation maximum. Consequently, a
maximum of 100 W m 2 is mainly characterized by diffuse
irradiance, a maximum of 1,000 W m ™2 by a greater portion
of direct solar irradiance. Figure 9 shows a clear species-
specific distinction of PAR absorption capabilities due to
varying radiation composition. Above a daily radiation
maximum of about 615 W m > where direct radiation
dominates, bracken absorbs clearly more direct PAR, as
illustrated in Fig. 8 (direct PAR Iy). The surplus of bracken
PAR absorption is continuously increasing with increasing
daily radiation maximum. Below the inversion point,

100

80-1 L.

60

[%]

40

[MJ-m=2.day-"]
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frequency of
radiation class

20
36%

0 T T T T = T T T 0
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------- bracken

Setaria global radiation

Fig. 9 Frequency and intensity of the daily irradiance maximum
between 1200 and 1300 hours for the ECSF meteorological station
(1998-2005) and total daily PAR absorption by bracken and Setaria,
respectively, based on the relative diurnal course of radiation from 5
December 2007 (see Figs. 7 and 8)
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Setaria shows a slight but nearly constant advantage in
PAR absorption in comparison to bracken. In a next step,
the hourly radiation data at the ECSF meteorological station
from 1998-2005 were evaluated to derive the frequency of
daily radiation maxima in the valley. Figure 9 reveals that
illumination situations favoring Setaria PAR absorption
occur on 64% of all days, while a third of all days with
more direct radiation support the higher PAR absorption
potential of bracken.

By summing up the daily PAR absorption based on the
synthetically generated data over all days of the year, while
considering the frequency distribution of the radiation
classes in Fig. 9, yields no clear advantage of one of the
both species. Setaria absorbs 1,533 MJ m ? year ' PAR
while bracken reaches almost the same annual PAR

absorption capacity of 1,530 MJ m™* year .

Discussion

The current paper focuses on a comparison of the PAR
radiation absorption capabilities of two competing species, the
pasture grass Setaria sphacelata and an aggressive weed, the
southern bracken (Pteridium arachnoideum), in the anthro-
pogenic pasture system of a tropical mountain biodiversity
hotspot in the eastern Andes of southern Ecuador. The work
relies on a numerical two-big-leaf radiation scheme specif-
ically parameterized with field surveys of plant functional
traits, encompassing structural and optical parameters of both
species. The samples selected during the field studies to
derived plant functional traits were chosen to properly
represent an average individual of both species under
different growth situations (elevation, slope angle and
aspect). The resulting structural and optical plant parameters
are in good agreement with measured values for similar
species or model defaults of comparable plant functional
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types (as, e.g., functional group of tropical C4 grasses). The
average LAI of Setaria, for instance, coincides quite well
with default values used for climate modeling of tropical C4
grasslands with land surface models (e.g., Buermann et al.
2001). The average LAI of southern bracken is lower than
the maximum values for a fully developed canopy of
northern bracken (P. aquilinum) in England (LAI ~4 in late
July; Blackburn and Pitman 1999; Pitman 2000). Leaf angle
values for Setaria were similar to those reported by other
studies of grasslands (e.g., Miller-Goodman et al. 1999; Peri
et al. 2003). The average leaf angle distribution parameter for
Setaria (x=—0.37) is in the same order of the default value
(x=—0.3) supplied by a comparable radiation scheme for C4
grassland (Oleson et al. 2004). With regard to the optical
traits, reflection measurements of bracken canopies in
England (400-1,100 nm; Blackburn and Pitman 1999;
Pteridium aquilinum) confirm the shape of the reflection
curve, however with a slightly lower reflectance over the
whole spectrum compared to the southern bracken. At the
same time, transmittance in the visible and near infrared
spectrum of bracken fronds in England (Pitman 2000) is
somewhat higher in comparison to the southern bracken.
Average measured PAR reflectance of Setaria is in almost
perfect agreement with default values for C4 grasslands
(11%) provided by different studies (e.g., Fisch et al. 1995)
and the CLM SVAT model that uses a similar radiation
scheme as described in this study (Oleson et al. 2004). Even
if the overall good coincidence indicates that the gathered
field samples represent an average individual under average
growth conditions in the study area, it should be stressed that
plant parameters used in numerical models might even
change with spatial resolution. This complicates the com-
parison of measured plant traits and respective published
model parameters. By applying the parameterized radiation
scheme, it is proven that the average individuals of bracken
and Setaria have similar PAR absorption potentials under the
typical radiation conditions of the Rio San Francisco valley.
Comparable similarities were also found on the landscape
level by other studies (e.g., Asner et al. 1998). The most
important parameter for the determination of the fraction of
absorbed PAR (fAPAR) in this study where the leaf area
index of the Setaria and bracken average individuals is
differing moderately (ALAI=0.54 m’m 2) is the leaf-sun
geometry (and thus, the leaf angle) in combination with the
fractionation of the radiation components (direct, diffuse).
Bracken has a higher PAR absorption potential under clear
sky conditions because the leaf angle distribution favors PAR
consumption during hours of high solar elevation. Similar
directional effects are described for short grass ecosystem by
Nouvellon et al. (2000). However, by scaling up to the
landscape level, other authors stress that leaf area is the main
decisive variable accounting for 60-80% of fAPAR varia-
tions while individually contributing canopy-level factors

explain only a smaller proportion of fAPAR variations
(Asner and Wessman 1997; Mwanamwenge et al. 1997,
Asner et al. 1998).

With regard to the current state of the radiation scheme,
the main uncertainty remains the decomposition of global
radiation to its direct, diffuse, and PAR fractions. Compre-
hensive field observation of all radiation parameters is
needed to derive a local decomposition function which can
be implemented in the radiation scheme, replacing the
currently used average decomposition functions (based on
Egs. 7-9). However, to derive local functions, several years
(at least one) of diffuse radiation and PAR measurements
are necessary. Most recently, respective sensors are installed
and a preliminary comparison with 1 month of data and the
results of the average functions used in this paper is
conducted. With respect to diffuse radiation, 46% of values
differ less than 10% of the calculated radiation where best
results were reached for clear and completely overcast days.
Generally, the average decomposition function (based on
Egs. 7-8 ) underestimates the observed values. With regard
of PAR decomposition (based on Eq. 9), a slight overesti-
mation by the function has been proven (+12% on average).
In most situations, this counterbalances the underestimation
of the composition function for diffuse radiation so that the
final calculation for incoming PAR radiation provides
reasonable data for the radiation scheme. Nevertheless,
locally derived decomposition functions replacing Eqgs. 7-9
will be implemented when sufficient data have been
gathered.

The results of the simulations gained with the parame-
terized radiation scheme reveal that neither bracken nor
Setaria exhibit a clear advantage in PAR absorption
capability under the current climatic conditions of the study
area. This means that, at first glance, PAR absorption seems
not to be the reason for bracken invasion. Another reason
could be that the bracken plants have more biological
growth power, e.g., due to the well-developed rhizome
system which make them grow faster to get more PAR,
water and nutrients. However, it must be stressed that
radiation absorption is just the initial factor of plant growth.
The transfer of absorbed PAR to biomass depends on the
radiation use efficiency (RUE) that can exhibit great
species-specific variations, particularly under water and
nutrient stress (for bracken, refer, e.g., to Bray 1991 and
Pakeman et al. 1994; for tropical C4 grass, to Kiniry et al.
1999 and Marques da Silva and Arrabaca 2004; for PAR
absorption under fertilization, to Ostrowska et al. 2008).
While water is not a limiting factor in the perhumid
environment of the Rio San Francisco valley, nutrient
deficiency (P, N) occurs (Makeschin et al. 2008). These
effects will be tested in future research by using a
photosynthesis module driven by the radiation scheme
presented in this paper.
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