Skip to main content
Log in

Das Fenster zur Kopfschmerzforschung

Was lehrt uns die funktionelle und strukturelle Neurobildgebung?

The window into headache research

What have we learned from functional and structural neuroimaging?

  • Schwerpunkt
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Aktuelle Ergebnisse der funktionellen Bildgebung des Gehirns bei Patienten mit Kopfschmerzen zeigen, dass vaskuläre Veränderungen nicht die primäre Ursache für den Schmerz in der Migräne sind. Die funktionelle Bildgebung hat gerade in der Kopfschmerzforschung erstmals das Gebiet einer rein anatomisch zuordnenden Wissenschaft verlassen und grundlegende Hinweise zur Pathophysiologie idiopathischer Syndrome geliefert. Die aktuellen Befunde der Neurobildgebung bei den verschiedensten Kopfschmerzerkrankungen zeigen eindeutig, dass die Migräne mit einer primären Dysfunktion des endogenen antinozizeptiven Systems einhergeht, zu denen das periaquäduktale Grau (PAG) und der Nucleus dorsalis raphe (DRN) des Mittelhirns sowie die Hirnstammstrukturen zählen, die die neuronale Kontrolle des zerebralen Blutflusses steuern (DRN und Locus coeruleus). In die fundamentalen Prozesse der akuten Cluster-Kopfschmerzattacken ist hingegen der Hypothalamus involviert. Diese Daten konnten von verschiedenen Arbeitsgruppen mehrfach repliziert werden und läuteten überzeugend eine neue Ära der pathophysiologischen Vorstellung dieser Syndrome und explizit die Bedeutung des Gehirns für diese Erkrankungen ein. Die jüngsten Arbeiten zu strukturellen Veränderungen des Gehirns bei Migräne, beim Spannungskopfschmerz und beim Cluster-Kopfschmerz sind in ihrer Bedeutung noch nicht abschätzbar, werfen aber fundamentale Fragen auf und lassen erwartungsvoll in die Zukunft unseres Verständnisses eines der häufigsten Symptome des Menschen blicken.

Abstract

Current functional neuroimaging studies in headache patients have demonstrated that changes in vascular function are not the primary cause for the pain in migraine. Especially in headache research, functional imaging revealed for the first time important information on the pathophysiology of idiopathic syndromes beyond mere anatomical attribution. Several independent studies have reinforced the crucial role of the brainstem in migraine resulting in primary dysfunction of the endogenous antinociceptive systems, including the periaqueductal grey and the dorsal raphe nucleus (DRN) in the midbrain as well as areas involved in the neuronal regulation of cerebral blood flow (DRN and locus coeruleus). The hypothalamus on the other hand is involved in the fundamental processes leading to the acute attacks of cluster headache. These data have been repeatedly replicated by several groups and led to a new understanding of the pathophysiology of these syndromes and specifically the central role of the brain. The recent studies investigating the structural changes in migraine, chronic tension-type headache and cluster headache are not yet clear in their relevance but raise important questions and promise increasing knowledge of one of the most frequent symptoms in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Afridi SK et al (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62(8):1270–1275

    Article  PubMed  Google Scholar 

  2. Afridi SK et al (2005) A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 128(Pt 4):932–939

    Article  CAS  PubMed  Google Scholar 

  3. Andersson JL et al (1997) Regional cerebral blood flow and oxygen metabolism during migraine with and without aura. Cephalalgia 17(5):570–579

    Article  CAS  PubMed  Google Scholar 

  4. Apkarian AV et al (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24(46):10410–10415

    Article  CAS  PubMed  Google Scholar 

  5. Bolay H et al (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8(2):136–142

    Article  CAS  PubMed  Google Scholar 

  6. Borsook D et al (2006) Functional imaging of the trigeminal system: applications to migraine pathophysiology. Headache 46 (Suppl 1):S32–S38

    Article  PubMed  Google Scholar 

  7. Borsook D et al (2003) Specific and somatotopic functional magnetic resonance imaging activation in the trigeminal ganglion by brush and noxious heat. J Neurosci 23(21):7897–7903

    CAS  PubMed  Google Scholar 

  8. Bovim G, Jenssen G, Ericson K (1992) Orbital phlebography: a comparison between cluster headache and other headaches. Headache 32(8):408–412

    Article  CAS  PubMed  Google Scholar 

  9. Cutrer FM et al (1998) Perfusion-weighted imaging defects during spontaneous migrainous aura. Ann Neurol 43(1):25–31

    Article  CAS  PubMed  Google Scholar 

  10. DaSilva AF et al (2007) Thickening in the somatosensory cortex of patients with migraine. Neurology 69(21):1990–1995

    Article  PubMed  Google Scholar 

  11. Davis KD et al (2008) Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 70(2):153–154

    Article  CAS  PubMed  Google Scholar 

  12. Denuelle M et al (2007) Hypothalamic activation in spontaneous migraine attacks. Headache 47(10):1418–1426

    PubMed  Google Scholar 

  13. Draganski B et al (2006) Decrease of thalamic gray matter following limb amputation. Neuroimage 31(3):951–957

    Article  CAS  PubMed  Google Scholar 

  14. Friberg L et al (1994) Interictal „patchy“ regional cerebral blood flow pattens in migraine patients. A single photon emission computerized tomographic study. Eur J Neurol 1:35–43

    Google Scholar 

  15. Friberg L et al (1991) Migraine pain associated with middle cerebral artery dilatation: reversal by sumatriptan. Lancet 338(8758):13–17

    Article  CAS  PubMed  Google Scholar 

  16. Fumal A et al (2006) Orbitofrontal cortex involvement in chronic analgesic-overuse headache evolving from episodic migraine. Brain 129(Pt 2):543–550

    Article  PubMed  Google Scholar 

  17. Goadsby PJ (1999) Short-lasting primary headaches: focus on trigeminal automatic cephalgias and indomethacin-sensitive headaches. Curr Opin Neurol 12(3):273–277

    Article  CAS  PubMed  Google Scholar 

  18. Goadsby PJ, Duckworth JW (1987) Effect of stimulation of trigeminal ganglion on regional cerebral blood flow in cats. Am J Physiol 253(2 Pt 2):270–274

    Google Scholar 

  19. Good CD et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36

    Article  CAS  PubMed  Google Scholar 

  20. Granziera C et al (2006) Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med 3(10) e402

  21. Hadjikhani N et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A 98(8):4687–4692

    Article  CAS  PubMed  Google Scholar 

  22. Hardebo JE (1994) How cluster headache is explained as an intracavernous inflammatory process lesioning sympathetic fibres. Headache 34:125–131

    Article  CAS  PubMed  Google Scholar 

  23. Headache Classification Committee of the International Headache Society (2004) The International Classification of Headache Disorders, 2nd edition. Cephalalgia 24(Suppl 1):1–160

    Google Scholar 

  24. Kuchinad A et al (2007) Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 27(15):4004–4007

    Article  CAS  PubMed  Google Scholar 

  25. Kupers RC, Svensson P, Jensen TS (2004) Central representation of muscle pain and mechanical hyperesthesia in the orofacial region: a positron emission tomography study. Pain 108(3):284–293

    Article  PubMed  Google Scholar 

  26. Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:391–396

    Google Scholar 

  27. Lehmenkühler A, Richter F (1993) Spreading depression in upper and lower depths of the rat cerebral cortex and its possible implications on the type of human migraine. Migraine: basic mechanisms and treatment. Lehmenkühler A, Grotemeyer KH, Tegtmeyer F (eds) Urban & Schwarzenberg, München, S 267–278

  28. Leone M et al (1999) Neuroendocrinology of cluster headache. Ital J Neurol Sci 20(7):S18–S20

    Article  CAS  PubMed  Google Scholar 

  29. Leone M et al (2006) Hypothalamic stimulation for intractable cluster headache: long-term experience. Neurology 67(1):150–152

    Article  PubMed  Google Scholar 

  30. Limmroth V et al (1996) Changes in cerebral blood flow velocity after treatment with sumatriptan or placebo and implications for the pathophysiology of migraine. J Neurol Sci 138(1–2):60–65

    Google Scholar 

  31. Lodi R et al (2006) Study of hypothalamic metabolism in cluster headache by proton MR spectroscopy. Neurology 66(8):1264–1266

    Article  CAS  PubMed  Google Scholar 

  32. Matharu MS et al (2006) Posterior hypothalamic activation in paroxysmal hemicrania. Ann Neurol 59(3):535–545

    Article  PubMed  Google Scholar 

  33. Matharu MS, Goadsby PJ (2002) Persistence of attacks of cluster headache after trigeminal nerve root section. Brain 125(Pt 5):976–984

    Article  PubMed  Google Scholar 

  34. Matharu MS et al (2003) No change in the structure of the brain in migraine: a voxel-based morphometric study. Eur J Neurol 10(1):53–57

    Article  CAS  PubMed  Google Scholar 

  35. May A (2003) Das trigeminovaskuläre System des Menschen: Zerebraler Blutfluss, funktionelle Bildgebung und primäre Kopfschmerzen. Nervenarzt 74(12):1067–1077

    Article  CAS  PubMed  Google Scholar 

  36. May A (2005) Cluster headache: pathogenesis, diagnosis, and management. Lancet 366(9488):843–855

    Article  PubMed  Google Scholar 

  37. May A et al (1999) Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med 5(7):836–838

    Article  CAS  PubMed  Google Scholar 

  38. May A et al (2000) PET and MRA findings in cluster headache and MRA in experimental pain. Neurology 55:1328–1335

    CAS  PubMed  Google Scholar 

  39. May A et al (1998) Hypothalamic activation in cluster headache attacks. Lancet 352:275–278

    Article  CAS  PubMed  Google Scholar 

  40. May A et al (1999) Functional magnetic resonance imaging in spontaneous attacks of SUNCT: short-lasting neuralgiform headache with conjunctival injection and tearing. Ann Neurol 46(5):791–794

    Article  CAS  PubMed  Google Scholar 

  41. May A et al (1999) Intra-cranial vessels in trigeminal transmitted pain: a PET study. Neuroimage 9:453–460

    Article  CAS  PubMed  Google Scholar 

  42. May A et al (2001) Magnetic resonance angiography in facial and other pain: neurovascular mechanisms of trigeminal sensation. J Cereb Blood Flow Metab 21(10):1171–1176

    Article  CAS  PubMed  Google Scholar 

  43. May A, Gaser C (2006) Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol 19(4):407–411

    Article  PubMed  Google Scholar 

  44. May A et al (1998) Experimental cranial pain elicited by Capsaicin: a PET-study. Pain 74(1):61–66

    Article  CAS  PubMed  Google Scholar 

  45. May A, Matharu M (2007) New insights into migraine: application of functional and structural imaging. Curr Opin Neurol 20(3):306–309

    Article  PubMed  Google Scholar 

  46. Olesen J, Friberg L (1991) Xenon-133 SPECT studies in migraine without aura, in migraine and other headaches: the vascular mechanisms. In: J Olesen (ed) Raven, London, pp 237–243

  47. Olesen J et al (1990) Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol 28(6):791–798

    Article  CAS  PubMed  Google Scholar 

  48. Olesen J, Larsen B, Lauritzen M (1981) Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 9(4):344–352

    Article  CAS  PubMed  Google Scholar 

  49. Olesen J et al (1982) Spreading cerebral oligemia in classical- and normal cerebral blood flow in common migraine. Headache 22(6):242–248

    Article  CAS  PubMed  Google Scholar 

  50. Olesen J, Tfelt-Hansen P, Welch K (2006) The Headaches. 3rd edn. Lippincott Williams & Wilkins, Philadelphia

  51. Raskin NH, Hosobuchi Y, Lamb S (1987) Headache may arise from perturbation of brain. Headache 27(8):416–420

    Article  CAS  PubMed  Google Scholar 

  52. Rocca MA et al (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37(7):1765–1770

    Article  PubMed  Google Scholar 

  53. Rodriguez-Raecke R, Niemeier A, Ihle K et al (2009) Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci 4;29(44):13746–13750

    Google Scholar 

  54. Schmidt-Wilcke T et al (2008) Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia 28(1):1–4

    CAS  PubMed  Google Scholar 

  55. Schmidt-Wilcke T et al (2006) Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125(1–2):89–97

    Google Scholar 

  56. Schmidt-Wilcke T et al (2005) Gray matter decrease in patients with chronic tension type headache. Neurology 65(9):1483–1486

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt-Wilcke T et al (2007) Striatal grey matter increase in patients suffering from fibromyalgia – a voxel-based morphometry study. Pain 135(3):315

    Google Scholar 

  58. Schuh-Hofer S et al (2006) The use of radiolabelled human serum albumin and SPECT/MRI co-registration to study inflammation in the cavernous sinus of cluster headache patients. Cephalalgia 26(9):1115–1122

    Article  CAS  PubMed  Google Scholar 

  59. Sjaastad O (1992) (ed) Cluster headache syndrome. Major problems in neurology, vol 23. W.B. Saunders, London

  60. Sjaastad O, Rinck P (1990) Cluster headache: MRI studies of the cavernous sinus and the base of the brain. Headache 30(6):350–351

    Article  CAS  PubMed  Google Scholar 

  61. Sprenger T et al (2004) Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology 62(3):516–517

    CAS  PubMed  Google Scholar 

  62. Sprenger T et al (2004) Hypothalamic activation in trigeminal autonomic cephalgia: functional imaging of an atypical case. Cephalalgia 24(9):753–757

    Article  CAS  PubMed  Google Scholar 

  63. Sprenger T et al (2005) SUNCT: bilateral hypothalamic activation during headache attacks and resolving of symptoms after trigeminal decompression. Pain 113(3):422–426

    Article  PubMed  Google Scholar 

  64. Valfre W et al (2008) Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache 48(1):109–117

    Article  PubMed  Google Scholar 

  65. Wang SJ et al (2006) Reduction in hypothalamic 1H-MRS metabolite ratios in patients with cluster headache. J Neurol Neurosurg Psychiatry 77(5):622–625

    Article  PubMed  Google Scholar 

  66. Weiller C et al (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1(7):658–660

    Article  CAS  PubMed  Google Scholar 

  67. Woods RP, Iacoboni M, Mazziotta JC (1994) Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med 331(25):1689–1692

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Der Autor dankt Anne Stankewitz für das Korrekturlesen. A. May wird von der Deutschen Forschungsgemeinschaft (MA 1862/2) gefördert. Diese Arbeit wird durch das Bundesministerium für Bildung und Forschung (Projekt No. 371 57 01) unterstützt.

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Diese Arbeit wurde möglich durch die Unterstützung der DFG und des BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, A. Das Fenster zur Kopfschmerzforschung. Schmerz 24, 130–136 (2010). https://doi.org/10.1007/s00482-010-0898-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-010-0898-y

Schlüsselwörter

Keywords

Navigation