Skip to main content
Log in

Physiological responses of Toxicodendron vernicifluum (Stokes) F.A. Barkley to cadmium stress under sufficient- and deficient-nitrogen conditions

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Nitrogen application mitigated the inhibiting effects of Cd stress on T. vernicifluum by increasing enzymatic antioxidants and phytohormone.

Abstract

To disclose the potential roles of nitrogen (N) availability in adaptive responses of Toxicodendron vernicifluum (Stokes) F.A. Barkley to Cd stress, a greenhouse experiment was conducted. A factorial design consisting of sufficient N and deficient N was combined with moderate Cd stress condition. Major growth traits and photosynthesis were significantly suppressed by Cd stress under deficient-N condition, whereas N application mitigated the inhibiting effects of Cd stress. The ABA inducement and stoma adjustment upon Cd stress were more significant under sufficient-N status, which contributed to the higher tolerance to Cd stress. IAA level was depressed by Cd stress when N nutrient is deficient, leading to the significant suppression on growth, whereas the depression on IAA was alleviated by N addition, which contributed to better growth performance under Cd stress. Enzymatic antioxidants play a vital role in response to Cd stress. The activities of SOD, APX and GR in leaves, and POD, APX, GR and CAT in roots all were significantly induced upon Cd stress under sufficient-N condition. Moreover, the expression of most genes encoding antioxidant enzymes was significantly induced upon Cd stress when N nutrient was adequate. In contrast, the activities of most antioxidant enzymes and the expression of most genes encoding these enzymes were not significantly induced upon Cd stress under deficient-N conditions. These results indicated that adequate N nutrient improves the tolerance of T. vernicifluum to Cd stress via promoting hormone signaling and antioxidant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atici Ö, Ağar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plantarum 49(2):215–222

    Article  CAS  Google Scholar 

  • Belleghem FV, Cuypers A, Semane B, Smeets K, Vangronsveld J, ďHaen J, Valcke R (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173:495–508

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Han Y, Jiang H, Korpelainen H, Li C (2011) Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J Exp Bot 62(14):5037–5050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chia MA, Lombardi AT, Melão MdGG, Parrish CC (2015) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95

    Article  CAS  PubMed  Google Scholar 

  • Cho N, Choi JH, Yang H, Jeong EJ, Lee KY, Kim YC, Sung SH (2012) Neuroprotective and anti-inflammatory effects of flavonoids isolated from Rhus verniciflua in neuronal HT22 and microglial BV2 cell lines. Food Chem Toxicol 50:1940–1945

    Article  CAS  PubMed  Google Scholar 

  • Devi R, Munjral N, Gupta AK, Kaur N (2007) Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea. Environ Exp Bot 61(2):167–174

    Article  CAS  Google Scholar 

  • Dresler S, Wójcik M, Bednarek W, Hanaka A, Tukiendorf A (2015) The effect of silicon on maize growth under cadmium stress. Russ J Plant Physi 62(1):86–92

    Article  CAS  Google Scholar 

  • Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83:475–488

    Article  CAS  PubMed  Google Scholar 

  • Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz K (2003) Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant Cell Environ 26:821–833

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166(1):20–31

    Article  CAS  PubMed  Google Scholar 

  • Haribabu TE, Sudha PN (2011) Effect of heavy metals copper and cadmium exposure on the antioxidant properties of the plant cleome gynandra. Int J Plant Annu Environ Sci 1(2):80–87

    CAS  Google Scholar 

  • Hashida K, Tabata M, kuroda K, Otsuka Y, Kubo S, Makino R, Kubojima Y, Tonosaki M, Ohara S (2014) Phenolic extractives in the trunk of Toxicodendron vernicifluum: chemical characteristics, contents and radial distribution. J Wood Sci 60:160–168

    Article  CAS  Google Scholar 

  • Hatata MM, Abdel-Aal EA (2008) Oxidative stress and antioxidant defense mechanisms in response to cadmium treatments. Am Eur J Agric Environ 4:655–669

    Google Scholar 

  • He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plantarum 143:50–63

    Article  CAS  Google Scholar 

  • He J, Ma C, Ma Y, Li H, Kang J, Liu T, Polle A, Peng C, Luo ZB (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res 20:163–174

    Article  CAS  Google Scholar 

  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170(11):965–975

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Pal M, Gupta P, Gadre R (2007) Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen assimilation in greening maize leaf segments: role of 2-oxoglutarate. Indian J Exp Biol 45:385–389

    CAS  PubMed  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman J-F, Renaut J (2009) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 8(1):400–417

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang X, Yang Y, Duan B (2013) Soil cadmium toxicity and nitrogen deposition differently affect growth and physiology in Toxicodendron vernicifluum seedlings. Acta Physiol Plant 35:529–540

    Article  CAS  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Bio 10(5):466–472

    Article  CAS  Google Scholar 

  • Luo ZB, Janz D, Jiang X, Go C, Rennenberg H, Feussner I, Polle A (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151:1902–1917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo ZB, Li K, Gai Y, Göbel C, Wildhagen H, Jiang X, Feußner I, Rennenberg H, Polle A (2011) The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environ Exp Bot 72:304–311

    Article  CAS  Google Scholar 

  • Luo J, Li H, Liu T, Polle A, Peng C, Luo Z-B (2013) Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. J Exp Bot 64(14):4207–4224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malčovská SM, Dučaiová Z, Maslaňáková I, Bačkor M (2014) Effect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excess. Water Air Soil Pollut 225:1–11

    Google Scholar 

  • Meng S, Zhang C, Su L, Li Y, Zhao Z (2016) Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environ Exp Bot 123:78–87

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Noriega G, Caggiano E, Lecube ML, Cruz DS, Batlle A, Tomaro M, Balestrasse KB (2012) The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals 25(6):1155–1165

    Article  CAS  PubMed  Google Scholar 

  • Panković D, Plesnićar M, Arsenijević-Maksimović I, Petrović N, Sakač Z, Kastori R (2000) Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann Bot 86:841–847

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regier N, Streb S, Cocozza C, Schaub M, Cherubini P, Zeeman SC, Frey B (2009) Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant Cell Environ 32(12):1724–1736

    Article  CAS  PubMed  Google Scholar 

  • Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71

    Article  CAS  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  • Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ 38(1):207–223

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ma W, Song J, Lu M, Rahman SU, Bui TTX, Vu DD, Zheng H, Wang J, Zhang Y (2017) Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiol 37(11):1457–1468

    Article  PubMed  Google Scholar 

  • Sofo A, Vitti A, Nuzzaci M, Tataranni G, Scopa A, Vangronsveld J, Remans T, Falasca G, Altamura MM, Degola F, Toppi LSd (2013) Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol Plantarum 149(4):487–498

    Article  CAS  Google Scholar 

  • Wang J, Chen J, Pan K (2013) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut R 20(3):1441–1449

    Article  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25(2):195–210

    Article  CAS  PubMed  Google Scholar 

  • Xing XH, Jiang HQ, Zhou Q, Xing H, Jiang HD, Wang SA (2016) Improved drought tolerance by early IAA- and ABA-dependent H2O2 accumulation induced by a-naphthaleneacetic acid in soybean plants. Plant Growth Regul 80:303–314

    Article  CAS  Google Scholar 

  • Xu N, Guo W, Liu J, Du N, Wang R (2015) Increased nitrogen deposition alleviated the adverse effects of drought stress on Quercus variabilis and Quercus mongolica seedlings. Acta Physiol Plant 37:107

    Article  CAS  Google Scholar 

  • Xue B, Zhang A, Jiang M (2009) Involvement of polyamine oxidase in abscisic acid-induced cytosolic antioxidant defense in leaves of maize. J Integr Plant Biol 51(3):225–234

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Sun C, Yao Y, Zhang Y, Achal V (2011) Growth and physiological responses of grape (Vitis vinifera “Combier”) to excess zinc. Acta Physiol Plantarum 33(4):1483–1491

    Article  CAS  Google Scholar 

  • Zengin FK (2006) The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. J Environ Biol 27(2):441–448

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhou ZC, Yang Q (2013) Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant Soil 364:93–104

    Article  CAS  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Reddy VR (2005) Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron 22:391–403

    Article  CAS  Google Scholar 

  • Zheng H, Zhang X, Ma W, Song J, Rahman SU, Wang J, Zhang Y (2017) Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei. Environ Exp Bot 138:77–87

    Article  Google Scholar 

  • Zong YZ, Shangguan ZP (2014) Nitrogen deficiency limited the improvement of photosynthesis in Maize by elevated CO2 under drought. J Integr Agric 13:73–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Start-up Project for Introduced Recruit in Northwest A&F University (no. Z111021402), the Fundamental Research Funds for the Central Universities (no. 2452016056), the Science and technology project of Shaanxi Province (2016NY-193).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Hua Huang or Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by V. Resco de Dios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, T.T.X., Lu, M., Vu, D.D. et al. Physiological responses of Toxicodendron vernicifluum (Stokes) F.A. Barkley to cadmium stress under sufficient- and deficient-nitrogen conditions. Trees 32, 1457–1471 (2018). https://doi.org/10.1007/s00468-018-1727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1727-7

Keywords

Navigation