Skip to main content
Log in

Universal node distribution in three bamboo species (Phyllostachys spp.)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Node distribution along the mature culm of three Phyllostachys species is governed by a hidden universal law and can be determined at the bamboo shoot stage by its base diameter.

Abstract

Bamboo exhibits unique structural properties that distinguish it from most other woody plants. One of the most remarkable properties is that the long hollow culm is separated into many small chambers by a sequence of nodes. The node distribution along the culm is, in general, sparse at the mid-culm and dense near the ends of the culm. In this study, we examined the intraspecific and interspecific variation in the node distribution of three species of the genus Phyllostachys (Phyllostachys pubescens Mazel ex Houz., Phyllostachys nigra var. henonis and Phyllostachys nigra Munro) with different culm sizes. The node distribution followed a single fitting curve via the normalization procedure, indicating the existence of a hidden universal law that governs the node distribution of the three species, despite their different appearances. Our findings also suggest that the node distribution along the mature culm could be determined at the stage of bamboo shoot by its base diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad M, Kamke FA (2005) Analysis of Calcutta bamboo for structural composite materials: physical and mechanical properties. Wood Sci Technol 39:448–459

    Article  CAS  Google Scholar 

  • Aiping Z, Dongsheng H, Haitao L, Yi S (2012) Hybrid approach to determine the mechanical parameters of fibers and matrixes of bamboo. Constr Build Mater 35:191–196

    Article  Google Scholar 

  • Banik RL (2015) Morphology and growth. In: Liese W, Köhl M (eds) Bamboo: the plant and its uses. Springer, Cham, pp 43–89

    Google Scholar 

  • Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York

    Book  Google Scholar 

  • Benton A (2015) Priority species of bamboo. In: Liese W, Köhl M (eds) Bamboo: the plant and its uses. Springer, Cham, pp 31–41

    Google Scholar 

  • Bess NM (2007) Bamboo in Japan, 2nd edn. Kodansya International, Tokyo

    Google Scholar 

  • Buckingham K, Jepson P, Wu L, Rao IVR, Jiang S, Liese W, Lou Y, Fu M (2011) The potential of bamboo is constrained by outmoded policy frames. Ambio 40:544–548

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark LG, Londoño X, Ruiz-Sanchez E (2015) Bamboo taxonomy and habitat. In: Liese W, Köhl M (eds) Bamboo: the plant and its uses. Springer, Cham, pp 43–89

    Google Scholar 

  • Dixon PG, Gibson LJ (2014) The structure and mechanics of Moso bamboo material. J R Soc Interface 11:2104321

    Article  Google Scholar 

  • Dixon PG, Ahvenainen P, Aijiza AN, Chen SH, Lin S, Augusciak PK, Borrega M, Svedström K, Gibson LJ (2015) Comparison of the structure and flexural properties of Moso, Guadua and Tre Gai bamboo. Constr Build Mater 90:11–17

    Article  Google Scholar 

  • Farrelly D (1984) The book of bamboo. Sierra Club, San Francisco

    Google Scholar 

  • Gao X, Li Z, Yu H, Jiang Z, Wang C, Zhang Y, Qi L, Shi L (2016) Modeling of the height-diameter relationship using an allometric equation model: a case study of stands of Phyllostachys edulis. J For Res 27:339–347

    Article  CAS  Google Scholar 

  • García JCC, Kleinn C (2010) Length curves and volume functions for guadua bamboo (Guadua angustifolia Kunth) for the coffee region of Colombia. Eur J For Res 129:1213–1222

    Article  Google Scholar 

  • Gratani L, Crescente MF, Varone L, Fabrini G, Digiulio E (2008) Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora 203:77–84

    Article  Google Scholar 

  • Hashimoto E, Watanabe M (1961) On the relation between the shape of young bamboo sprout and the shape and quality of matured culms. Bull Kyoto Univ For 33:345–360 (in Japanese with English summary)

    Google Scholar 

  • Higuchi K (1981) Changes in inter node length and its mid-diameter on bamboo species. J Jpn For Soc 63:379–382 (in Japanese)

    Google Scholar 

  • Inoue A (2013) Culm form analysis for bamboo, Phyllostachys pubescens. J For Res 24:525–530

    Article  CAS  Google Scholar 

  • Inoue A, Kuraoka K, Kitahara F (2012a) Mathematical expression for the relationship between internode number and internode length for bamboo, Phyllostachys pubescens. J For Res 23:435–439

    Article  Google Scholar 

  • Inoue A, Kunisaki T, Kitahara F, Suga H (2012b) Modeling height-diameter relationship for bamboo, Phyllostachys bambusoides. Bamboo J 28:1–10

    CAS  Google Scholar 

  • Inoue A, Sakamoto S, Suga H, Kitazato H, Sakuta K (2013) Construction of one-way volume table for the three major useful bamboos in Japan. J For Res 18:323–334

    Article  Google Scholar 

  • Japan Meteorological Agency (2016) Search for historical weather data. http://www.data.jma.go.jp/obd/stats/etrn/index.php. Accessed 7 Dec 2016

  • Liese W, Tang TKH (2015) Properties of the bamboo culm. In: Liese W, Köhl M (eds) Bamboo: the plant and its uses. Springer, Cham, pp 227–256

    Google Scholar 

  • Lobovikov M, Paudel S, Piazza M, Ren H, Wu J (2007) World bamboo resources: a thematic study prepared in the framework of the Global Forest Resources Assessment 2005. FAO, Rome

    Google Scholar 

  • Lucas S (2013) Bamboo. Reaktion Books, London

    Google Scholar 

  • Nomura T, Yamada T (1991) Growth of moso bamboo (Phyllostachys heterocycle)I. Internodal growth. Mokuzai Gakkaishi 37:1115–1122 (in Japanese with English summary)

    Google Scholar 

  • Ota M (1950) Studies on the properties of bamboo stem 3. On the form of stem of Ma-dake (Phyllostachys reticulate C. Koch), Moso-chiku (Phyllostachys edulis Riv.) and Ha-chiku (Phyllostachys nigra var. Henonis Makino). Bull Kyushu Univ For 18:37–58 (in Japanese with English summary)

    Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 7 Dec 2016

  • Sato M, Tanigaki T, Sato Y, Shima H, Inoue A (2016) Optimal structural properties of cylindrical structures learning from morphology of wild bamboos with peculiar nodes and vascular bundles. J Jpn Soc Civil Eng A2(72):25–34 (in Japanese with English summary)

    Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenerg 19:224–229

    Article  Google Scholar 

  • Shigematsu Y (1940a) Studien über die formen des bambushalmes 1. mitteilung: Ueber den länge der halminternodien bei Matake. J Jpn For Soc 22:495–501 (in Japanese)

    Google Scholar 

  • Shigematsu Y (1940b) Studien über die formen des bambushalms 2. te mitteilung: Ueber den dicke der halmwand und länge der halminternodien von Hotei-take. J Jpn For Soc 22:591–594 (in Japanese)

    Google Scholar 

  • Shima H, Sato M, Inoue A (2016) Self-adaptive formation of uneven node spacing in wild bamboo. Phys Rev E 93:022406

    Article  PubMed  Google Scholar 

  • Singnar P, Nath AJ, Das AK (2015) Culm characteristics and volume-weight relationship of a forest bamboo (Melocanna baccifera (Roxb.) Kurz) from northeast India. J For Res 26:841–849

    Article  Google Scholar 

  • Song X, Zhou G, Jiang H, Yu S, Fu J, Li W, Wang W, Ma Z, Peng C (2011) Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenge. Environ Rev 19:418–428

    Article  CAS  Google Scholar 

  • Taylor D, Kinane B, Sweeney C, Sweetnam D, O’Reilly P, Duan K (2015) The biomechanics of bamboo: investigating the role of the nodes. Wood Sci Technol 49:345–357

    Article  CAS  Google Scholar 

  • Wang X, Ren H, Zhang B, Fei B, Burgert I (2011) Cell wall structure and formation of maturing fibers of moso bamboo (Phyllostachys pubescens) increase buckling resistance. J R Soc Interface 9:988–996

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Shao Z, Wu Y, Wu D (2014) The toughness contribution of bamboo node to the ModeIinterlaminar fracture toughness of bamboo. Wood Sci Technol 48:1257–1268

    Article  CAS  Google Scholar 

  • Yen TM (2016) Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachys pubescens). Bot Stud 57:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhuang S, Sun B, Ji J, Li C, Zhou S (2014) Estimation of biomass and carbon storage of moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter-age bivariate distribution model. Forestry 87:674–682

    Article  Google Scholar 

  • Zhao HL, Denich M, Borsch T (2005) Growth behavior of Phyllostachys nigra var. henonis (Bambusoideae) in Central China. J For Res 16:163–168

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of the Nagomi Town and Nagomi Satoyama Committee and Dr. Kotaro Sakuta (Kyushu University) for their support with field research. We also like to thank the students of the Laboratory of Forest Ecology, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto for their technical assistance. This study was supported by JSPS KAKENHI (Grant Nos. JP25390147, JP26292088, JP15H04207, JP16K12823, and JP16K14948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Inoue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Y. Sano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, A., Tochihara, S., Sato, M. et al. Universal node distribution in three bamboo species (Phyllostachys spp.). Trees 31, 1271–1278 (2017). https://doi.org/10.1007/s00468-017-1546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1546-2

Keywords

Navigation