Skip to main content

Advertisement

Log in

Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L.

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The impact of xylem cavitation and embolism on leaf (K leaf) and stem (K stem) hydraulic conductance was measured in current-year shoots of Cercis siliquastrum L. (Judas tree) using the vacuum chamber technique. K stem decreased at leaf water potentials (ΨL) lower than −1.0 MPa, while K leaf started to decrease only at ΨL <−1.5 MPa. Leaf infiltration under vacuum with Phloxine B revealed that minor veins underwent extensive embolism and became non-functional at ΨL <−1.5 MPa, thus indicating that leaf vein embolism was closely related to K leaf changes. Field measurements of leaf conductance to water vapour (g L) and ΨL showed that stomata closed when ΨL decreased below the ΨL threshold inducing loss of hydraulic conductance in the leaf. The partitioning of hydraulic resistances within shoots and leaves was measured using the high-pressure flow meter method. The ratio of leaf to shoot hydraulic resistance was about 0.8, suggesting that stem cavitation had a limited impact on whole shoot hydraulic conductance. We suggest that stomatal aperture may be regulated by the cavitation-induced reduction of hydraulic conductance of the soil-to-leaf water pathway which, in turn, strongly depends on the hydraulic architecture of the plant and, in particular, on leaf hydraulics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Aasamaa K, Sõber A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance and stomatal sensitivity to changes of leaf water status in temperate and deciduous trees. Aust J Plant Physiol 28:765–774

    Article  Google Scholar 

  • Canny M (2001) Embolism and refilling in the maize leaf lamina and the role of the protoxylem lacuna. Am J Bot 88:47–51

    PubMed  Google Scholar 

  • Cochard H (2002) Xylem embolism and drought-induced stomatal closure in maize. Planta 215:466–471

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Bréda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in Quercus petraea during drought: evidence for stomatal control of xylem embolism? Ann Sci For 53:197–206

  • Davis CC, Fritsh PW, Li J, Donoghue MJ (2002) Phylogeny and biogeography of Cercis (Fabaceae): evidence from nuclear ribosomal ITS and chloroplast ndhF sequence data. Syst Bot 27:289–302

    Google Scholar 

  • Hacke U, Sauter JJ (1995) Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J Exp Bot 46:1177–1183

    CAS  Google Scholar 

  • Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol 126:27–31

    Article  CAS  PubMed  Google Scholar 

  • Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Google Scholar 

  • Kavanagh KL, Bond BJ, Aitken SN, Gartner BL, Knowe S (1999) Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol 19:31–37

    PubMed  Google Scholar 

  • Kikuta SB, Lo Gullo MA, Nardini A, Richter H, Salleo S (1997) Ultrasound acoustic emissions from dehydrating leaves of deciduous and evergreen trees. Plant Cell Environ 20:1381–1390

    Google Scholar 

  • Kjellbom P, Larsson C, Johansson I, Karlsson M, Johanson U (1999) Aquaporins and water homeostasis in plants. Trends Plant Sci 4:308–314

    PubMed  Google Scholar 

  • Kolb KJ, Sperry JS, Lamont BB (1996) A method for measuring xylem hydraulic conductance and embolism in entire root and shoot systems. J Exp Bot 47:1805–1810

    CAS  Google Scholar 

  • Lo Gullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to cavitation and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ 18:661–669

    Google Scholar 

  • Lo Gullo MA, Nardini A, Trifilò P, Salleo S (2003) Changes in leaf hydraulics and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree). Physiol Plant 117:186–194

  • Meinzer FC (2002) Co-ordination of vapour and liquid phase water transport properties in plants. Plant Cell Environ 25:265–274

    PubMed  Google Scholar 

  • Milburn JA (1979) Water flow in plants. Longman, London

  • Morillon R, Chrispeels MJ (2001) The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proc Natl Acad Sci USA 98:14138–14143

    Article  CAS  PubMed  Google Scholar 

  • Nardini A (2001) Are sclerophylls and malacophylls hydraulically different? Biol Plant 44:239–245

  • Nardini A, Salleo S (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15:14–24

  • Nardini A, Tyree MT (1999) Root and shoot hydraulic conductance of seven Quercus species. Ann For Sci 56:371–377

    Google Scholar 

  • Nardini A, Tyree MT, Salleo S (2001) Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiol 125:1700–1709

    Article  CAS  PubMed  Google Scholar 

  • Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001) Evolution and function of leaf venation architecture: a review. Ann Bot 87:553–566

    Article  Google Scholar 

  • Sack L, Melcher PJ, Zwieniecki MA, Holbrook NM (2002) The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. J Exp Bot 53:2177–2184

    Article  CAS  PubMed  Google Scholar 

  • Salleo S, Lo Gullo MA, De Paoli D, Zippo M (1996) Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytol 132:47–56

    Google Scholar 

  • Salleo S, Nardini A, Pitt F, Lo Gullo MA (2000) Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.). Plant Cell Environ 23:71–79

    Article  Google Scholar 

  • Salleo S, Lo Gullo MA, Raimondo F, Nardini A (2001) Vulnerability to cavitation of leaf minor veins: any impact on leaf gas exchange? Plant Cell Environ 24:851–859

  • Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol 19:453–459

    PubMed  Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteor 104:13–23

    Article  Google Scholar 

  • Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas fir and white fir. Tree Physiol 17:275–280

    Google Scholar 

  • Sperry JS, Alder FR, Eastlack SE (1993) The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. J Exp Bot 44:1075–1082

    Google Scholar 

  • Stiller V, Sperry JS (2002) Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.). J Exp Bot 53:1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Dixon MA (1983) Cavitation events in Thuja occidentalis? Ultrasonic acoustic emissions from the sapwood can be measured. Plant Physiol 72:1094–1099

    Google Scholar 

  • Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Plant Physiol 88:574–580

  • Tyree MT, Sperry JS (1989) The vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Mol Biol 40:19–38

    Article  Google Scholar 

  • Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurement of root hydraulic conductance using a high pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94

    CAS  Google Scholar 

  • Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R (1999) Refilling of embolized vessels in young stems of Laurel. Do we need a new paradigm? Plant Physiol 120:11–21

  • Zwieniecki MA, Holbrook NM (1998) Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.). Plant Cell Environ 21:1173–1180

    Article  Google Scholar 

Download references

Acknowledgements

The present study was funded by a grant from University of Trieste. We are grateful to Professor Hanno Richter for stimulating discussion and suggestions and to Dr. Hervè Cochard for suggesting Phloxine B as a dye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Nardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nardini, A., Salleo, S. & Raimondo, F. Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L.. Trees 17, 529–534 (2003). https://doi.org/10.1007/s00468-003-0265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-003-0265-z

Keywords

Navigation