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Progressive loss of kidney function in childhood is paralleled
by the development of a complex clinical picture, also referred
to as the pediatric uremic syndrome. This syndrome, caused
by chronic kidney disease or acute renal injury, is affecting
nearly all organ systems (Table 1), and consequently, results in
a significantly decreased quality of life and increased mortal-
ity during, and also beyond, childhood [1–3]. The complexity
of the uremic syndrome is also related to its multifactorial
character: due to (1) the deterioration of the renal endocrine
function (e.g., erythropoietin and calcitriol deficiency), (2) the
dysregulation of fluid and electrolyte homeostasis, (3) the de-
velopment of specific symptoms related to kidney disease
(hypertension, fluid overload) and its causes (e.g., diabetes,
autoimmune disorders) or (4) treatment (e.g., reactions to
bioincompatible dialysis materials), and (5) the accumulation
of toxic organic metabolites (i.e., Buremic toxins^) due to
decreased renal excretion and/or accompanied by increased
toxin generation (Fig. 1) [4, 5]. Without neglecting the multi-
factorial character of the uremic syndrome, this editorial com-
mentary will focus mainly on the accumulation of uremic
toxins and its impact within the pediatric uremic syndrome.

In recent decades, rapid progress in both identification of
uremic retention solutes and evaluation of their toxicity has
been accomplished. Currently, more than 140 uremic toxins
are identified [6]. As proposed by the European Uremic Toxin

Workgroup (EUTox), uremic toxins can be subdivided into three
major classes based on their physicochemical properties that
affect their removal during dialysis: (1) small water-soluble
compounds (< 500 Da; e.g., urea) that are easily removed by
diffusion, (2) middle molecules (≥ 500 Da; e.g., β2-microglob-
ulin) that are most efficiently removed using large pore dialyzer
membranes and by adding convect ive transpor t
(hemodiafiltration), and (3) protein-bound compounds (e.g., in-
doxyl sulfate) that most often have a low molecular weight but
are poorly removed by dialysis due to their protein binding [5,
7]. In experimental and clinical studies, many of these uremic
toxins exert some degree of toxicity on one or more functional
systems that contributes to the uremic syndrome and its compli-
cations [8]. In general, the cardiovascular, inflammatory, and
fibrogenic system were most frequently affected by uremic
toxins in experimental and clinical studies [8].

Nearly all these clinical studies on uremic solute retention
were performed in adult chronic kidney disease (CKD) pa-
tients, and to the best of our knowledge, studies investigating
the impact of uremic toxins on the growing child are virtually
non-existent. Nevertheless, children, and the uremic syn-
drome they are suffering from, have particular characteristics
that hamper the full translation of adult experience and knowl-
edge in uremic toxicity into childhood (Fig. 2). First, children
have physiological peculiarities that might affect the accumu-
lation pattern of uremic toxins. For instance, children have
proportionally larger body water volumes and lower circulat-
ing proteins than adults. Therefore, it is unlikely that the dis-
tribution, the inter-compartmental clearance, the removal pat-
tern during dialysis, and the retention profile of uremic toxins
would be identical to those in adults [9]. Also, the diet of
children differs on several aspects from adults, e.g., relatively
higher protein and caloric needs per kilogram bodyweight. As
diet is one of the major determinants of intestinal microbiota,
it is thus likely that the accumulation pattern of uremic toxins
originating from microbial metabolism might be impacted,
irrespectively of kidney function [10, 11].
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Second, the impact of toxicity on maturational and devel-
opmental processes of nearly all organ systems, which repre-
sents a core aspect of the pediatric uremic syndrome, can by
definition not be extrapolated from adults in whommaturation
has come to an end (Fig. 2). Growth and puberty, which are
unique pediatric features, are commonly affected in the pedi-
atric uremic syndrome. The Annual Report of the North
America Pediatric Renal Trials and Collaborative Studies
(NAPRTCS) in 2011 demonstrated that still 32.8% of children

initiated with dialysis between 2002 and 2011 had significant
growth failure [12]. As growth failure in children with CKD
impacts quality of life and is associated with an increased risk
of hospitalization and death, it is considered as a relevant
marker of the pediatric uremic syndrome [13, 14]. Multiple
factors (e.g., nutritional, metabolic, and endocrine abnormali-
ties) are identified in the pathophysiology of growth failure
within the pediatric uremic syndrome. Although unexplored
yet, it is very likely that uremic toxins directly affect growth
since several studies demonstrated that enhanced removal, by
applying intensified and daily hemodialysis, improved growth
velocity compared to conventional hemodialysis [9, 15–18].
Although these studies were observational and uncontrolled,
the catch-up growth achieved in these populations is striking,
as standard treatment with adequate nutrition in children on
maintenance hemodialysis remains associated with a mean
loss in height SDS of − 0.4 to − 0.8 [19]. Beside growth,
several other maturational processes occur in childhood.
There is a maturational increase in organic solute transport
in the proximal tubule up to the first 2 years of life [20, 21].
Since gut-derived, protein-bound uremic toxins, which are
inadequately removed by current dialysis techniques, depend
on these active transporters at the side of the tubules for their
elimination; differences in their accumulation pattern and tox-
icity versus adulthood are very likely [22, 23]. Beside the
maturational changes in excretion by organic solute transport,
the accumulation pattern of gut-derived uremic toxins might
also be influenced by the ongoing intestinal microbiota devel-
opment which continues until the first 2–3 years of life [11].

Finally, several elements of the pediatric uremic syndrome
differ from its adult counterpart. Whereas the pediatric uremic
syndrome is mainly secondary to congenital anomalies of kid-
ney and urinary tract (CAKUT) and hereditary renal diseases,
the uremic syndrome in adulthood is predominately caused by
glomerulopathies (e.g., diabetic nephropathy, hypertension)
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Table 1 Symptoms, characteristics, and complications of the pediatric
uremic syndrome. The symptoms, characteristics, and complications
highlighted in bold with mark of (*) al features unique for the pediatric
uremic syndrome

Fluid and electrolyte balance: polyuria, polydipsia, fluid overload,
hypertension, oligo-anuria, metabolic acidosis, hyperkalemia,
hyperphosphatemia, hypocalcemia

Endocrine and hormonal system: growth hormone resistance*, insulin
resistance, thyroid dysfunction, hyperaldosteronism, adipokine dysbalance,
pubertal delay*, anorexigenic hormones increase

Bone and soft tissue: disordered bone turnover and mineralization, bone pain,
fractures, growth retardation*, vascular and soft tissue calcifications,
rickets*, active vitamin D deficiency, hyperparathyroidism, FGF-23 excess,
Klotho deficiency

Hematological system: anemia, erythrocyte fragility, susceptibility to
infection, low response to vaccination, inflammation, hypercoagulability,
bleeding tendency, bone marrow inhibition

Gastrointestinal system: anorexia, nausea, vomiting, gastropareses, slow
gastrointestinal motility, altered taste

Neurological system: polyneuropathy, coordination disturbances, tremor,
cognitive dysfunctions, decreased attention span, coma, lethargy, disturbed
sleep pattern

Skin and mucosa: skin atrophy, pruritus, calciphylaxis, periodontitis, stomatitis
Cardiac system: left ventricle hypertrophy, cardiomyopathy, pericarditis,

coronary calcifications
Psychosocial factors: school absenteeism*, low quality of life, parental stress

and burn out*
Others: malnutrition, muscle weakness, changes in drug protein binding

FGF-23 fibroblast growth factor-23
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and autosomal dominant polycystic kidney disease [24].
Moreover, the differences in survival are striking. While the
5-year survival probability is 89% for children initiating renal
replacement therapy, adults have an expected survival of 10%
after 10 years on dialysis [25]. These low-mortality rates in
childhood make the use of mortality as primary endpoint in
pediatric studies less relevant or at least insufficient.
Therefore, clinical outcome studies in the pediatric uremic
syndrome almost inevitably depend on consideration of other
patient relevant outcomes, which may be both short term, e.g.,
growth, pubertal development, bone metabolism, cardiovas-
cular risk factors, and schooling, as well as long term such as
premature cardiovascular disease. Additionally, school absen-
teeism, education level, and parental stress and burnout are
important and unique endpoints in the pediatric uremic syn-
drome [16]. Several of these parameters are patient-centered
and relevant to social life (growth, pubertal development,
school absenteeism, familial stress), which will allow to high-
light novel and up to now often neglected aspects of uremia.

The limitations mentioned above with respect to
translation of adult knowledge on uremic toxicity to
childhood might be turned into an advantage, as re-
search in the pediatric population might offer several
opportunities to improve our understanding of uremic
toxicity within both the adult and pediatric uremic syn-
drome (Fig. 2). For instance, the majority of adult CKD
patients have confounding factors (e.g., diabetes, hyper-
tension, smoking, and aging) that, like uremic toxins,
impact the cardiovascular, inflammatory, and fibrogenic
system. As these factors are less preponderant or even
absent in the pediatric population, clinical outcome

studies in the pediatric CKD population will probably
be more suitable to elucidate the cardiovascular toxicity
of uremic toxins per se in comparison to those in the
adult CKD population. Additionally, unique for children
is the early presentation of hereditary renal diseases
with initially a selective tubular defect (e.g., cystinosis).
Evaluating these renal diseases might improve our un-
derstanding of the role of tubular cells and their organic
solute transporters in the clearance of uremic toxins,
which are barely removed with current dialysis thera-
pies. At last, the pediatric uremic syndrome has unique
additional endpoints, e.g., growth, that might be helpful
in the clinical study of the uremic toxicity since it can
be evaluated in a relative short-term.

In conclusion, the pediatric uremic syndrome is a
complex multisystem disorder caused and influenced
by multiple factors, of which uremic toxin accumulation
remained up till now unexplored. As children, and the
pediatric uremic syndrome they are suffering from, have
several peculiarities, the translation of adult knowledge
on uremic toxicity to childhood might be skewed. On
the other hand, we are convinced that uremic toxicity
research in the pediatric population could have an added
value in elucidating in a clinical setting the intrinsic
toxicity of uremic toxins. Subsequently, better under-
standing of uremic toxicity might offer a solid patho-
physiologic underpinning for the development of novel
dietary and pharmacological interventions, with the ulti-
mate goal not only of improving the health of patients
with CKD but, hopefully, also of preventing its progres-
sion to end-stage kidney disease.
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