Skip to main content

Advertisement

Log in

The role of the kidney and the sympathetic nervous system in hypertension

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Nearly one-third of the world’s population has hypertension. The human and societal impact of hypertension is enormous. Primary hypertension accounts for 95 % of cases of hypertension in adults. The pathogenesis of primary hypertension is complex. The kidney and the sympathetic nervous system play important roles in the development and maintenance of hypertension. This review discusses their respective roles, the interaction between the two, implications of sympathetic overactivity in kidney disease and therapeutic interventions that have been developed on the basis of this knowledge, especially modulation of the sympathetic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223

    Article  PubMed  Google Scholar 

  2. Norwood VF (2002) Hypertension. Pediatr Rev 23:197–208

    Article  PubMed  Google Scholar 

  3. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F (2007) High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 116:1488–1496

    Article  PubMed  Google Scholar 

  4. World Health Organisation (2011) Global status report on non-communicable disease 2010

  5. Carretero OA, Oparil S (2001) Essential hypertension. Part I: definition and etiology. Circulation 101:329–335

    Article  Google Scholar 

  6. Wyszyńska T, Cichocka E, Wieteska-Klimczak A, Jobs K, Januszewicz P (1992) A single pediatric center experience with 1025 children with hypertension. Acta Paediatr 81:244–246

    Article  PubMed  Google Scholar 

  7. Flynn JT (2001) Evaluation and management of hypertension in childhood. Prog Pediatr Cardiol 12:177–188

    Article  PubMed  Google Scholar 

  8. Oparil S, Zaman MA, Calhoun DA (2003) Pathogenesis of hypertension. Ann Intern Med 139:761–776

    Article  CAS  PubMed  Google Scholar 

  9. Bright R (1836) Tabular view of the morbid appearances in 100 cases connected with albuminous urine: With observations. Guy’s Hospital Resp 1:380

    Google Scholar 

  10. Mohamed FA (1877) On the sphygmomanometric evidence of arteriocapillary sclerosis. Trans Path Soc 28:394–401

    Google Scholar 

  11. Klahr S (1989) The kidney in hypertension—villain and victim. N Eng J Med 320:731–733

    Article  CAS  Google Scholar 

  12. Hall JE, Brands MW, Shek EW (1996) Central role of the kidney and abnormal volume control in hypertension. J Human Hypertens 10:633–639

    CAS  Google Scholar 

  13. Dahl LK, Heine M (1975) Primary role of renal homographs in setting chronic blood pressure level in rats. Circ Res 36:692–696

    Article  CAS  PubMed  Google Scholar 

  14. Rettig R, Folberth CG, Stauss H, Kopf D, Waldherr R, Baldauf G, Unger T (1990) Hypertension in rats induced by renal grafts from renovascular hypertension donors. Hypertens 15:429–435

    Article  CAS  Google Scholar 

  15. Bianchi G, Fox U, Di Francesco GF, Bardi U, Radice M (1973) The hypertensive role of the kidney in spontaneously hypertensive rats. Clin Sci 45:135S–139S

    Google Scholar 

  16. Rettig R, Bandelow N, Patschan O, Kuttler B, Frey B, Uber A (1996) The importance of the kidney in primary hypertension: insights from cross transplantation. J Human Hypertens 10:641–644

    CAS  Google Scholar 

  17. Koomans HA, Joles JA, Rabelink TJ (1996) Hypertension and the kidney: culprit and victim. Nephrol Dial Transplant 11:1961–1966

    Article  CAS  PubMed  Google Scholar 

  18. Guyton AC (1990) Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Physiol 259:R865–R877

    CAS  PubMed  Google Scholar 

  19. Hall JE, Mizelle HL, Hildebrandt DA, Brands MW (1990) Abnormal pressure natriuresis: a cause or consequence of hypertension? Hypertension 15:547–559

    Article  CAS  PubMed  Google Scholar 

  20. Coleman TG, Cowley AW, Guyton AC (1975) Experimental hypertension and the long-term control of arterial pressure. In: Guyton AC, Jones CE (eds) MTP international review of science, cardiovascular physiology, vol 1. University Park Press, Baltimore, pp 259–298

    Google Scholar 

  21. Hall JE (1991) Renal function in one kidney, one-clip hypertension and low renin essential hypertension. Am J Hypertens 4:523s–533s

    CAS  PubMed  Google Scholar 

  22. Curtis JJ, Luke RG, Dustan HP, Kashgarian N, Whelchel JD, Jones P, Diethelm AD (1983) Remission of essential hypertension after renal transplantation. N Engl J Med 309:1009–1015

    Article  CAS  PubMed  Google Scholar 

  23. Grim CE, Luft FC, Miller JZ, Brown PL, Gannon MA, Weinberger MH (1979) Effect of sodium loading and depletion on normotensive first-degree relatives of hypertensives. J Lab Clin M 94:964–971

    Google Scholar 

  24. Widgren H, Herlitz BR, Hedner T, Berglund G, Wikstran Jonsson O, Anderson OK (1991) Blunted renal sodium excretion during acute saline loading in normotensive men with positive family history of hypertension. Am J Hypertens 4:570–578

    CAS  PubMed  Google Scholar 

  25. Pusterela C, Beretta-Piccoli C, Städler O, Weidmann Favre L, Valotton M (1986) Blood pressure regulation on low and high sodium diets in normotensive members of normotensive or hypertensive families. J Hypertens 4:S310–S313

    Google Scholar 

  26. Skimkets RA, Warnock DG, Bositis CM, Nelson Williams C, Hansson JH, Schambelan M, Gill JR, Ulick S, Milora RV, Findling JW, Canessa CM, Rossier B, Lifton RP (1994) Liddle syndrome—heritable human hypertension caused by mutations in the beta-subunit of the epithelial sodium channel. Cell 79:407–414

    Article  Google Scholar 

  27. Mune T, Rogerson FM, Nikkilá H, Agarwal AK, White PC (1995) Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nature Genet 10:394–399

    Article  CAS  PubMed  Google Scholar 

  28. Bianchi G, Baer PG, Fox U, Duzzi L, Pagetti D, Giovannetti AM (1975) Changes in renin, water balance and sodium during development of hypertension in genetically hypertensive rats. Circ Res 37(suppl 1):153–161

    Article  Google Scholar 

  29. Bierwaltes WH, Arenshorst WJ, Kremmer PJ (1982) Electrolyte and water balance in young hypertensive rats. Hypertension 4:908–915

    Article  Google Scholar 

  30. Woolfson RG, de Wardener HE (1996) Primary renal abnormalities in hereditary hypertension. Kidney Inter 50:717–731

    Article  CAS  Google Scholar 

  31. Hollenberg NK, Williams GH, Adams DF (1981) Essential hypertension: abnormal renal vascular and endocrine response to psychological stimulus. Hypertension 3:11–17

    Article  CAS  PubMed  Google Scholar 

  32. Uneda S, Fujishima S, Fujiki Y, Tochikubo O, Oda H, Ashahina Kaneko Y (1984) Renal haemodynamics and the renin angiotensin system in adolescents genetically predisposed to essential hypertension. J Hypertens 2:S437–S439

    CAS  Google Scholar 

  33. Roman RJ, Kaldunski M (1988) Pressure natriuresis and cortical and papillary blood flow in spontaneously hypertensive rats. Hypertension 11:657–663

    Article  CAS  PubMed  Google Scholar 

  34. Roman RJ, Kaldunski M (1991) Pressure natriuresis and cortical and papillary blood flow in inbred Dahl rats. Am J Phsiol 255:R756–R759

    Google Scholar 

  35. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR (1992) Molecular basis of human hypertension. Role of angiotensinogen. Cell 71:169–180

    Article  CAS  PubMed  Google Scholar 

  36. Hata A, Namikawa C, Sasaki M, Sato K, Nakamura T, Tamura K, Lalouel JM (1994) Angiotensinogen as a risk factor for essential hypertension in Japan. J Clin Invest 93:1285–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Caulfield M, Lavender P, Farrall M, Munroe P, Lawson M, Turner P, Clark AJ (1994) Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 330:1629–1633

    Article  CAS  PubMed  Google Scholar 

  38. Lüscher TF, Boulanger CF, Yang Z, Noll G, Dohi Y (1993) Interactions between endothelium-derived relaxing and constricting factors in health and cardiovascular disease. Circulation 87:V36–V44

    Article  Google Scholar 

  39. Levine GN, Keaney JF, Vita JA (1995) Cholesterol reduction in cardiovascular disease. N Engl J Med 332:512–521

    Article  CAS  PubMed  Google Scholar 

  40. Chen PY, Sanders PW (1991) L-arginine abrogates salt sensitive hypertension in Dahl/Rapp rats. J Clin Invest 88:1559–1567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lüscher TF, Vanhoutte PM (1986) Endothelium derived contractions to acetylchol;ine in the aorta of the spontaneously hypertensive rats. Hypertension 8:344–348

    Article  PubMed  Google Scholar 

  42. Zhang BL, Liu KL, Benzoni D, Sassard J (1993) Nitric oxide and eicosanoid interactions in kidneys of Lyon hypertensive rats. J Hypertens 5:136–137

    Google Scholar 

  43. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    Article  CAS  PubMed  Google Scholar 

  44. Barker DJ (1992) The fetal origins of adult hypertension. J Hypertens Suppl 10:S39–S44

    Article  CAS  PubMed  Google Scholar 

  45. Keller J, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–118

    Article  PubMed  Google Scholar 

  46. Zandi-Nejad K, Luyckx VA, Brenner BM (2006) Adult hypertension and kidney disease: the role of fetal programming. Hypertension 47:502–508

    Article  CAS  PubMed  Google Scholar 

  47. Johnson RJ, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B (2002) Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med 346:913–923

    Article  CAS  PubMed  Google Scholar 

  48. Ceisus AAC De Re Medicina (1935–1938) 3 vols, (transl: Spencer W). London: Heinemann

  49. Mark AL (1996) The sympathetic nervous system in hypertension: a potential long-term regulator of arterial pressure. J Hypertens Suppl 14:S159–S165

    CAS  PubMed  Google Scholar 

  50. Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D (2003) Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand 177:275–284

    Article  CAS  PubMed  Google Scholar 

  51. Grassi G, Colombo M, Seravalle G, Spaziani D, Mancia G (1998) Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 31:64–67

    Article  CAS  PubMed  Google Scholar 

  52. Yamada Y, Miyajima E, Tochikubo O, Matsukawa T, Ishii M (1989) Age-related changes in muscle sympathetic nerve activity in essential hypertension. Hypertension 13:870–877

    Article  CAS  PubMed  Google Scholar 

  53. Marcus R, Krause L, Weder AB, Dominguez-Meja A, Schork NJ, Julius S (1994) Sex-specific determinants of increased left ventricular mass in the Tecumseh Blood Pressure Study. Circulation 90:928–936

    Article  CAS  PubMed  Google Scholar 

  54. Grassi G, Giannattasio C, Failla M, Pesenti A, Peretti G, Marinoni E et al (1995) Sympathetic modulation of radial artery compliance in congestive heart failure. Hypertension 26:348–354

    Article  CAS  PubMed  Google Scholar 

  55. Kim JR, Kiefe CI, Liu K, Williams OD, Jacobs DR Jr, Oberman A (1999) Heart rate and subsequent blood pressure in young adults: the CARDIA study. Hypertension 33:640–646

    Article  CAS  PubMed  Google Scholar 

  56. Esler M (2000) The sympathetic system and hypertension. Am J Hypertens 13:99S–105S

    Article  CAS  PubMed  Google Scholar 

  57. Chapleau MW, Hajduczok G, Abboud FM (1988) Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 295:327–334

    Article  CAS  PubMed  Google Scholar 

  58. Guo GB, Thames MD, Abboud FM (1983) Arterial baroreflexes in renal hypertensive rabbits. Selectivity and redundancy of baroreceptor influence on heart rate, vascular resistance, and lumbar sympathetic nerve activity. Circ Res 53:223–234

    Article  CAS  PubMed  Google Scholar 

  59. Xie PL, Chapleau MW, McDowell TS, Hajduczok G, Abboud FM (1990) Mechanism of decreased baroreceptor activity in chronic hypertensive rabbits. Role of endogenous prostanoids. J Clin Invest 86:625–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087

    CAS  PubMed  Google Scholar 

  61. Cullen-McEwen LA, Kett MM, Dowling J, Anderson WP, Bertram JF (2003) Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41:335–340

    Article  CAS  PubMed  Google Scholar 

  62. Gattone VH, Evan AP, Overhage JM, Severs WB (1990) Developing renal innervation in the spontaneously hypertensive rat: evidence for a role of the sympathetic nervous system in renal damage. J Hypertens 8:423–428

    Article  PubMed  Google Scholar 

  63. Head RJ (1989) Hypernoradrenergic innervation: its relationship to functional and hyperplastic changes in the vasculature of the spontaneously hypertensive rat. Blood Vessels 26:1–20

    CAS  PubMed  Google Scholar 

  64. Grisk O, Rose H-J, Lorenz G, Rettig R (2002) Sympathetic—renal interaction in chronic arterial pressure control. Am J Physiol Regul Integr Comp Physiol 283:R441–R450

    CAS  PubMed  Google Scholar 

  65. Scislo TJ, Augustyniak RA, O’Leary DS (1998) Differential arterial baroreflex regulation of renal, lumbar, and adrenal sympathetic nerve activity in the rat. Am J Physiol 275:R995–R1002

    CAS  PubMed  Google Scholar 

  66. Johansson M, Rundqvist B, Petersson M, Lambert G, Friberg P (2003) Regional norepinephrine spillover in response to angiotensin-converting enzyme inhibition in healthy subjects. J Hypertens 21:1371–1375

    Article  CAS  PubMed  Google Scholar 

  67. Abboud FM (1974) Effects of sodium, angiotensin, and steroids on vascular reactivity in man. Fed Proc 33:143–149

    CAS  PubMed  Google Scholar 

  68. Li Z, Mao HZ, Abboud FM, Chapleau MW (1996) Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res 79:802–811

    Article  CAS  PubMed  Google Scholar 

  69. Hollenberg NK, Adams DF, Solomon H, Chenitz WR, Burger BM, Abrams HL, Merrill JP (1975) Renal vascular tone in essential and secondary hypertension: hemodynamic and angiographic responses to vasodilators. Medicine (Baltimore) 54:29–44

    Article  CAS  Google Scholar 

  70. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G (1990) Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 70:963–985

    CAS  PubMed  Google Scholar 

  71. DiBona GF, Sawin LL (1999) Functional significance of the pattern of renal sympathetic nerve activation. Am J Physiol 277:R346–R353

    CAS  PubMed  Google Scholar 

  72. DiBona GF, Kopp UC (1995) Neural control of renal function: role in human hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven Pr, New York, pp 1349–1358

    Google Scholar 

  73. DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

    CAS  PubMed  Google Scholar 

  74. Light KC (2000) Environmental and psychosocial stress in hypertension onset and progression. In: Oparil S, Weber MA (eds) Hypertension: a companion to Brenner and Rector’s the kidney. WB Saunders, Philadelphia, pp 59–70

    Google Scholar 

  75. Hendley ED, Ohlsson WG (1991) Two new inbred rat strains derived from SHR: WKHA, hyperactive, and WKHT, hypertensive, rats. Am J Physiol 261:H583–H589

    CAS  PubMed  Google Scholar 

  76. DiBona GF, Jones SY, Sawin LL (1996) Renal sympathetic neural mechanisms as intermediate phenotype in spontaneously hypertensive rats. Hypertension 27:626–630

    Article  CAS  PubMed  Google Scholar 

  77. Lee RMKW, Borkowski KR, Leenen FHH, Tsoporis J, Coughlin M (1991) Combined effect of neonatal sympathectomy and adrenal demedullation on blood pressure and vascular changes in spontaneously hypertensive rats. Circ Res 69:714–721

    Article  CAS  PubMed  Google Scholar 

  78. Law CM, Sheill AW (1996) Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens 14:935–941

    Article  CAS  PubMed  Google Scholar 

  79. Weitz G, Deckert P, Heindl S, Struck J, Perras B, Dodt C (2003) Evidence for lower sympathetic nerve activity in young adults with low birth weight. J Hypertens 21:943–950

    Article  CAS  PubMed  Google Scholar 

  80. Shannon J, Jordan J, Costa F, Robertson RM, Biaggioni I (1997) The hypertension of autonomic failure and its treatment. Hypertension 30:1062–1067

    Article  CAS  PubMed  Google Scholar 

  81. Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P (1984) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247:E21–E28

    CAS  PubMed  Google Scholar 

  82. Esler M, Jennings G, Leonard P, Sacharias N, Burke F, Johns J, Blombery P (1984) Contribution of individual organs to total noradrenaline release in humans. Acta Physiol Scand Suppl 527:11–16

    CAS  PubMed  Google Scholar 

  83. Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev 59:919–957

    CAS  PubMed  Google Scholar 

  84. Cuche JL, PrinseauJ SF (1986) Plasma free, sulfo- and glucuro-conjugated catecholamines in uremic patients. Kidney Int 30:566–572

    Article  CAS  PubMed  Google Scholar 

  85. Elias AN, Vaziri ND, Maksy M (1985) Plasma norepinephrine, epinephrine, and dopamine levels in end-stage renal disease. Effect of hemodialysis. Arch Intern Med 145:1013–1015

    Article  CAS  PubMed  Google Scholar 

  86. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, Dell’Oro R, Mancia G (2011) Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 57:846–851

    Article  CAS  PubMed  Google Scholar 

  87. Klein IHHT, Ligtenberg G, Neumann J, Oey PL, Koomans HA, Blankestijn PJ (2003) Sympathetic nerve activity is inappropriately increased in chronic renal disease. J Am Soc Nephrol 14:3239–3244

    Article  PubMed  Google Scholar 

  88. Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, Wieneke GH, Van Huffelen AC, Koomans HA (1999) Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med 340:1321–1328

    Article  CAS  PubMed  Google Scholar 

  89. Ye S, Ozgur B, Campese VM (1997) Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int 51:722–727

    Article  CAS  PubMed  Google Scholar 

  90. Ye S, Zhong H, Yanamadala V, Campese VM (2002) Renal injury caused by intrarenal injection of phenol increases afferent and efferent renal sympathetic nerve activity. Am J Hypertens 15:717–724

    Article  CAS  PubMed  Google Scholar 

  91. Campese VM, Kogosov E (1995) Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 25:878–882

    Article  CAS  PubMed  Google Scholar 

  92. Campese VM, Kogosov E, Koss M (1995) Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis 26:861–865

    Article  CAS  PubMed  Google Scholar 

  93. Converse RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG (1992) Sympathetic overactivity in patients with chronic renal failure. New Engl J Med 327:1912–1918

    Article  PubMed  Google Scholar 

  94. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, Dietl KH, Rahn KH (2002) Sympathetic nerve activity in end-stage renal disease. Circulation 106:1974–1979

    Article  PubMed  Google Scholar 

  95. Cottone S, Lorito MC, Riccobene R, Nardi E, Mul G, Buscemi S, Geraci C, Guarneri M, Arsena R, Cerasola G (2008) Oxidative stress, inflammation and cardiovascular disease in chronic renal failure. J Nephrol 21:175–179

    PubMed  Google Scholar 

  96. Natarajan SK, Thomas S, Ramamoorthy P, Basivireddy J, Pulimood AB, Ramachandran A, Balasubramanian KA (2006) Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models. J Gastroenterol Hepatol 21:947–957

    Article  PubMed  Google Scholar 

  97. Schiffrin EL, Lipman ML, Mann JFE (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    Article  PubMed  Google Scholar 

  98. Shokoji T, Nishiyama A, Fujisawa Y, Hitomi H, Kiyomoto H, Takahashi N, Kimura J, Kohno M, Abe Y (2003) Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats. Hypertension 41:266–273

    Article  CAS  PubMed  Google Scholar 

  99. Hirooka Y (2011) Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 34:407–412

    Article  CAS  PubMed  Google Scholar 

  100. Ye S, Zhong H, Yanamadala S, Campese VM (2006) Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension 48:309–315

    Article  CAS  PubMed  Google Scholar 

  101. Park J (2012) Cardiovascular risk in chronic kidney disease: role of the sympathetic nervous system. Cardiol Res Pract. doi:10.1155/2012/319432

    PubMed Central  PubMed  Google Scholar 

  102. Grassi G, Seravalle G, Ghiadoni L, Tripepi G, Bruno RM, Mancia G, Zoccali C (2011) Sympathetic nerve traffic and asymmetric dimethylarginine in chronic kidney disease. Clin J Am Soc Nephrol 6:2620–2627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Leone A, Moncada S, Vallance P, Calver A, Collier J (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  PubMed  Google Scholar 

  104. Mallamaci F, Tripepi G, Maas R, Malatino L, Böger R, Zoccali C (2004) Analysis of the relationship between norepinephrine and asymmetric dimethyl arginine levels among patients with end-stage renal disease. J Am Soc Nephrol 15:435–441

    Article  CAS  PubMed  Google Scholar 

  105. Augustyniak RA, Victor RG, Morgan DA, Zhang W (2006) L-NAME- and ADMA-induced sympathetic neural activation in conscious rats. Am J Physiol Regul Integr Comp Physiol 290:R726–R732

    Article  CAS  PubMed  Google Scholar 

  106. Bergamaschi CT, Campos RR, Lopes OU (1999) Rostral ventrolateral medulla: a source of sympathetic activation in rats subjected to long-termtreatment with L-NAME. Hypertension 34:744–747

    Article  CAS  PubMed  Google Scholar 

  107. Veljković S, Jovanović-Mićić D, Japundžić N, Samardžić R, Beleslin DB (1989) The area postrema and the hypertensive effect of angiotensin. Metab Brain Dis 4:61–65

    Article  PubMed  Google Scholar 

  108. Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ (2003) Enalapril and losartan reduce sympathetic hyperactivity in patients with chronic renal failure. J Am Soc Nephrol 14:425–430

    Article  CAS  PubMed  Google Scholar 

  109. Siddiqi L, Oey PL, Blankestijn PJ (2011) Aliskiren reduces sympathetic nerve activity and blood pressure in chronic disease patients. Nephrol Dial Transplant 26:2930–2934

    Article  CAS  PubMed  Google Scholar 

  110. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  111. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, McAlister F, Garg AX (2006) Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 17:2034–2047

    Article  PubMed  Google Scholar 

  112. Rich A (2008) Morbidity and mortality. In:USRDS 2008 Annual Data Report. Bethesda, MD: National Institutes of Health, NIDDK, 129–146

  113. Grassi G, Dell’Oro GR, Mancia G (2011) Sympathetic mechanisms, organ damage, and antihypertensive treatment. Curr Hypertens Rep 13:303–308

    Article  CAS  PubMed  Google Scholar 

  114. Dinenno FA, Jones PP, Seals DR, Tanaka H (2000) Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am J Physiol Heart Circ Physiol 278:H1205–H1210

    CAS  PubMed  Google Scholar 

  115. Grassi G (2006) Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertens Res 29:839–847

    Article  CAS  PubMed  Google Scholar 

  116. Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, Esler MD, Lambert GW (2009) Sympathetic activation in chronic renal failure. J Am Soc Nephrol 20:933–939

    Article  PubMed  Google Scholar 

  117. Esunge PM (1991) From blood pressure to hypertension: the history of research. J R Soc Med 84:621

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Freis ED (1990) Origins and development of antihypertensive treatment. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management. Raven, New York, pp 2093–2094

    Google Scholar 

  119. Fries ED (1995) Historical development of antihypertensive treatment. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management. New York, Raven Press, pp 2741–2751

  120. Peet MM (1947) Results of bilateral supradiaphragmatic splanchnicectomy for arterial hypertension. N Engl JMed 236:270–276

    Article  CAS  Google Scholar 

  121. Smithwick RH, Thompson JE (1953) Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc 152:1501–1504

    Article  CAS  PubMed  Google Scholar 

  122. Lyons RH, Moe GK, Neligh RM, Hoobler SW, Campbell KN, Berry RL, Rennick BR (1947) The effects of blockade of the autonomic ganglia in man with tetraethylammonium; preliminary observations on its clinical application. Am J Med Sci 213:315–323

    Article  CAS  PubMed  Google Scholar 

  123. Paton WDM, Zaimis EJ (1948) Clinical potentialities of certain bisquaternary salts causing neuromuscular and ganglionic block. Nature 162:810

    Article  CAS  PubMed  Google Scholar 

  124. (1982) Low doses v standard dose of reserpine. A randomized, double-blind, multiclinic trial in patients taking chlorthalidone. J Am Med Assoc 248:2471–2477

  125. Freis ED (1995) Historical development of antihypertensive treatment. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 2741–2751

    Google Scholar 

  126. Oates JA, Gillespie L Jr, Udenfiiend S, Sjoerdsma A (1960) Decarboxylase inhibition and blood pressure reduction by alpha-methyl-3,4-dihydroxy-DL-phenylalanine. Science 131:1890–1891

    Article  CAS  PubMed  Google Scholar 

  127. Prichard BN, Gillam PM (1964) Use of propranolol (Inderal) in treatment of hypertension. Br Med J 2:725–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. (1967) Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. J Am Med Assoc 202:1028–1034.

  129. (1970) Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. J Am Med Assoc 213:1143–1152.

  130. Nash DT (1990) Alpha-adrenergic blockers: mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin Cardiol 13:764–772

    Article  CAS  PubMed  Google Scholar 

  131. Heran BS, Galm BP, Wright JM (2012) Blood pressure lowering efficacy of alpha blockers for primary hypertension. Cochrane Database Syst Rev 15(8):CD004643. doi:10.1002/14651858.CD004643.pub3

    Google Scholar 

  132. Saxena PR (1992) Interaction between the renin-angiotensin-aldosterone and sympathetic nervous systems. J Cardiovasc Pharmacol 19:S80–S88

    Article  CAS  PubMed  Google Scholar 

  133. Cox SL, Ben A, Story DF, Ziogas J (1995) Evidence for the involvement of different receptor subtypes in the pre- and postjunctional actions of angiotensin II at rat sympathetic neuroeffector sites. Br J Pharmacol 114:1057–1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Dorward PK, Rudd CD (1991) Influence of brain renin-angiotensin system on renal sympathetic and cardiac baroreflexes in conscious rabbits. Am J Physiol 260:H770–H778

    CAS  PubMed  Google Scholar 

  135. Ajayi AA, Reid JL (1988) Renin-angiotensin modulation of sympathetic reflex function in essential hypertension and in the elderly. Int J Clin Pharmacol Res 8:327–333

    CAS  PubMed  Google Scholar 

  136. Grassi G, Turri C, Dell’Oro R, Stell ML, Bolla GB, Mancia G (1998) Effect of chronic angiotensin converting enzyme inhibition on sympathetic nerve traffic and baroreflex control of the circulation in essential hypertension. J Hypertens 16:1789–1796

    Article  CAS  PubMed  Google Scholar 

  137. Krum H, Lambert E, Windebank E, Campbell DJ, Esler M (2006) Effect of angiotensin II receptor blockade on autonomic nervous system function in patients with essential hypertension. Am J Physiol Heart Circ Physiol 290:H1706–H1712

    Article  CAS  PubMed  Google Scholar 

  138. Zazgornik J, Biesenbach G, Janko O, Gross C, Mair R, Brücke P, Debska-Slizien A, Rutkowski B (1998) Bilateral nephrectomy: the best, but often overlooked, treatment for refractory hypertension in hemodialysis patients. J Am Hypertens 11:1364–1370

    Article  CAS  Google Scholar 

  139. Symplicity HTN-1 Investigators (2011) Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 57:911–917

    Article  CAS  Google Scholar 

  140. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361:932–934

    Article  CAS  PubMed  Google Scholar 

  141. Krum H, Schlaich M, Whitbourn SPA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multi-centre safety and proof of principle cohort study. Lancet 373:1275–1281

    Article  PubMed  Google Scholar 

  142. Symplicity HTN-2 Investigators, Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  Google Scholar 

  143. Mohaupt MG, Schmidli J, Luft FC (2007) Management of uncontrollable hypertension with a carotid sinus stimulation device. Hypertension 50:825–828

    Article  CAS  PubMed  Google Scholar 

  144. Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS (2004) Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 43:306–311

    Article  CAS  PubMed  Google Scholar 

  145. Scheffers IJ, Kroon AA, Tordoir JH, de Leeuw PW (2008) Rheos baroreflex hypertension therapy system to treat resistant hypertension. Expert Rev Med Devices 5:33–39

    Article  PubMed  Google Scholar 

  146. Lande MB, Flynn JT (2009) Treatment of hypertension in children and adolescents. Pediatr Nephrol 24:1939–1949

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, P., Dasgupta, I. The role of the kidney and the sympathetic nervous system in hypertension. Pediatr Nephrol 30, 549–560 (2015). https://doi.org/10.1007/s00467-014-2789-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2789-4

Keywords

Navigation