Skip to main content
Log in

Over- or underfill: not all nephrotic states are created equal

  • Editorial Commentary
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Blessed were the days when it all made sense and the apparent mechanism for edema formation in nephrotic syndrome was straightforward: the kidneys lost protein in the urine, which lowered the plasma oncotic pressure. Thus, fluid leaked into the interstitium, depleting the intravascular volume with subsequent activation of renin/aldosterone and consequent avid renal sodium retention. As simple as that! Unfortunately, a number of clinical and laboratory observations have raised serious concerns about the accuracy of this “underfill” hypothesis. Instead, an “overfill” hypothesis was generated. Under this assumption, the nephrotic syndrome not only leads to urinary protein wasting, but also to primary sodium retention with consequent intravascular overfilling, with the excess fluid spilling into the flood plains of the interstitium, leading to edema. Recently, an attractive mechanism was proposed to explain this primary sodium retention: proteinuria includes plasma proteinases, such as plasmin, which activate the epithelial sodium channel in the collecting duct, ENaC. In this edition, further evidence for this hypothesis is being presented by confirming increased plasmin content in the urine of children with nephrotic syndrome and demonstrating ENaC activation. If correct, this hypothesis would provide a simple treatment for the edema: pharmacological blockade of ENaC, for instance, with amiloride. Yet, how come clinicians have not empirically discovered the presumed power of ENaC blockers in nephrotic syndrome? And why is it that some patients clearly show evidence of intravascular underfilling? The controversy of over- versus underfilling demonstrates how much we still have to learn about the pathophysiology of nephrotic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bockenhauer D, Medlar AJ, Ashton E, Kleta R, Lench N (2012) Genetic testing in renal disease. Pediatr Nephrol 27:873–883

    Article  PubMed  Google Scholar 

  2. Epstein A (1917) Concerning the causation of edema in chronic parenchymatous nephritis: methods for its alteration. Am J Med Sci 154:638–647

    Article  Google Scholar 

  3. Bockenhauer D, Aitkenhead H (2011) The kidney speaks: interpreting urinary sodium and osmolality. Arch Dis Child Educ Pract Ed 96:223–227

    Article  CAS  PubMed  Google Scholar 

  4. Usberti M, Gazzotti RM, Poiesi C, D’Avanzo L, Ghielmi S (1995) Considerations on the sodium retention in nephrotic syndrome. Am J Nephrol 15:38–47

    Article  CAS  PubMed  Google Scholar 

  5. Brown EA, Markandu ND, Sagnella GA, Squires M, Jones BE, MacGregor GA (1982) Evidence that some mechanism other than the renin system causes sodium retention in nephrotic syndrome. Lancet 2:1237–1240

    Article  CAS  PubMed  Google Scholar 

  6. Kapur G, Valentini RP, Imam AA, Mattoo TK (2009) Treatment of severe edema in children with nephrotic syndrome with diuretics alone–a prospective study. Clin J Am Soc Nephrol 4:907–913

    Article  PubMed  Google Scholar 

  7. Brown EA, Markandu ND, Sagnella GA, Jones BE, MacGregor GA (1984) Lack of effect of captopril on the sodium retention of the nephrotic syndrome. Nephron 37:43–48

    Article  CAS  PubMed  Google Scholar 

  8. Oliver W, Vadnay L, Sporynsk K (1963) Physiologic responses associated with steroid-induced diuresis in nephrotic syndrome. J Lab Clin Med 62:449–464

    CAS  PubMed  Google Scholar 

  9. Brown EA, Markandu N, Sagnella GA, Jones BE, MacGregor GA (1985) Sodium retention in nephrotic syndrome is due to an intrarenal defect: evidence from steroid-induced remission. Nephron 39:290–295

    Article  CAS  PubMed  Google Scholar 

  10. Lecomte J, Juchmes J (1978) So-called absence of edema in analbuminemia. Rev Med Liege 33:766–770

    CAS  PubMed  Google Scholar 

  11. Joles JA, Willekes-Koolschijn N, Braam B, Kortlandt W, Koomans HA, Dorhout Mees EJ (1989) Colloid osmotic pressure in young analbuminemic rats. Am J Physiol 257:F23–F28

    CAS  PubMed  Google Scholar 

  12. Buehler BA (1978) Hereditary disorders of albumin synthesis. Ann Clin Lab Sci 8:283–286

    CAS  PubMed  Google Scholar 

  13. Brown EA, Markandu ND, Roulston JE, Jones BE, Squires M, MacGregor GA (1982) Is the renin-angiotensin-aldosterone system involved in the sodium retention in the nephrotic syndrome? Nephron 32:102–107

    Article  CAS  PubMed  Google Scholar 

  14. Meltzer JI, Keim HJ, Laragh JH, Sealey JE, Jan KM, Chien S (1979) Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. Ann Intern Med 91:688–696

    Article  CAS  PubMed  Google Scholar 

  15. Usberti M, Gazzotti RM (1998) Hyporeninemic hypoaldosteronism in patients with nephrotic syndrome. Am J Nephrol 18:251–255

    Article  CAS  PubMed  Google Scholar 

  16. Vande Walle JG, Donckerwolcke RA, van Isselt JW, Derkx FH, Joles JA, Koomans HA (1995) Volume regulation in children with early relapse of minimal-change nephrosis with or without hypovolaemic symptoms. Lancet 346:148–152

    Article  CAS  PubMed  Google Scholar 

  17. Koomans HA, Braam B, Geers AB, Roos JC, Dorhout Mees EJ (1986) The importance of plasma protein for blood volume and blood pressure homeostasis. Kidney Int 30:730–735

    Article  CAS  PubMed  Google Scholar 

  18. Reid CJ, Marsh MJ, Murdoch IM, Clark G (1996) Nephrotic syndrome in childhood complicated by life threatening pulmonary oedema. BMJ 312:36–38

    Article  CAS  PubMed  Google Scholar 

  19. Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL, Lechene CP, Brenner BM (1983) Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest 71:91–103

    Article  CAS  PubMed  Google Scholar 

  20. Frenk S, Antonowicz I, Craig JM, Metcoff J (1955) Experimental nephrotic syndrome induced in rats by aminonucleoside; renal lesions and body electrolyte composition. Proc Swoc Exp Biol Med 89:424–427

    Article  CAS  Google Scholar 

  21. Chandra M, Hoyer JR, Lewy JE (1981) Renal function in rats with unilateral proteinuria produced by renal perfusion with aminonucleoside. Pediatr Res 15:340–344

    Article  CAS  PubMed  Google Scholar 

  22. Kleta R, Bockenhauer D (2006) Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol 104:73–80

    Article  Google Scholar 

  23. Kim SW, Wang W, Nielsen J, Praetorius J, Kwon TH, Knepper MA, Frokiaer J, Nielsen S (2004) Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol 286:F922–F935

    Article  CAS  PubMed  Google Scholar 

  24. Kim SW, de Seigneux S, Sassen MC, Lee J, Kim J, Knepper MA, Frokiaer J, Nielsen S (2006) Increased apical targeting of renal ENaC subunits and decreased expression of 11betaHSD2 in HgCl2-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol 290:F674–F687

    Article  CAS  PubMed  Google Scholar 

  25. de Seigneux S, Kim SW, Hemmingsen SC, Frokiaer J, Nielsen S (2006) Increased expression but not targeting of ENaC in adrenalectomized rats with PAN-induced nephrotic syndrome. Am J Physiol Renal Physiol 291:F208–F217

    Article  PubMed  Google Scholar 

  26. Feraille E, Mordasini D, Gonin S, Deschenes G, Vinciguerra M, Doucet A, Vandewalle A, Summa V, Verrey F, Martin PY (2003) Mechanism of control of Na, K-ATPase in principal cells of the mammalian collecting duct. Ann N Y Acad Sci 986:570–578

    Article  CAS  PubMed  Google Scholar 

  27. Deschenes G, Doucet A (2000) Collecting duct (Na+/K+)-ATPase activity is correlated with urinary sodium excretion in rat nephrotic syndromes. J Am Soc Nephrol 11:604–615

    CAS  PubMed  Google Scholar 

  28. Kleyman TR, Myerburg MM, Hughey RP (2006) Regulation of ENaCs by proteases: an increasingly complex story. Kidney Int 70:1391–1392

    Article  CAS  PubMed  Google Scholar 

  29. Planes C, Caughey GH (2007) Regulation of the epithelial Na+ channel by peptidases. Curr Top Dev Biol 78:23–46

    Article  CAS  PubMed  Google Scholar 

  30. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O (2009) Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 20:299–310

    Article  CAS  PubMed  Google Scholar 

  31. Andersen R, Buhl K, Jensen B, Svenningsen P, Friis U, Jespersen T (2013) Remission of nephrotic syndrome diminishes urinary plasmin content and abolishes activation of ENaC. Pediatr Nephrol. doi:10.1007/s00467-013-2439-2

  32. Van de Walle JG, Donckerwolcke RA, Greidanus TB, Joles JA, Koomans HA (1996) Renal sodium handling in children with nephrotic relapse: relation to hypovolaemic symptoms. Nephrol Dial Transplant 11:2202–2208

    Article  PubMed  Google Scholar 

  33. Wang SJ, Tsau YK, Lu FL, Chen CH (2000) Hypovolemia and hypovolemic shock in children with nephrotic syndrome. Acta Paediatr Taiwan 41:179–183

    CAS  PubMed  Google Scholar 

  34. Parrish RA, Scurry RB, Robertson AF 3rd (1976) Recurrent arterial thrombosis in nephrosis. Am J Dis Child 130:428–429

    CAS  PubMed  Google Scholar 

  35. Citak A, Emre S, Sairin A, Bilge I, Nayir A (2000) Hemostatic problems and thromboembolic complications in nephrotic children. Pediatr Nephrol 14:138–142

    Article  CAS  PubMed  Google Scholar 

  36. Kerlin BA, Ayoob R, Smoyer WE (2012) Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin J Am Soc Nephrol 7:513–520

    Article  CAS  PubMed  Google Scholar 

  37. Deschenes G, Guigonis V, Doucet A (2004) Molecular mechanism of edema formation in nephrotic syndrome. Arch Pediatr 11:1084–1094

    Article  CAS  PubMed  Google Scholar 

  38. Palmer LG, Andersen OS (1989) Interactions of amiloride and small monovalent cations with the epithelial sodium channel. Inferences about the nature of the channel pore. Biophys J 55:779–787

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Bockenhauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockenhauer, D. Over- or underfill: not all nephrotic states are created equal. Pediatr Nephrol 28, 1153–1156 (2013). https://doi.org/10.1007/s00467-013-2435-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2435-6

Keywords

Navigation