Skip to main content

Advertisement

Log in

Calcium and phosphate balance in adolescents on home nocturnal haemodialysis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Studies in adults show superior serum phosphate and parathyroid hormone (PTH) control on slow nocturnal haemodialysis (NHD) compared with conventional haemodialysis. We studied the progress of four children aged 12, 13, 14 and 16 years after they had been initiated on NHD. The follow-up period ranged from 6 months to 20 months. Biochemical indices of bone metabolism were collected prospectively. All four children were initially dialysed against a 1.5 mmol/l calcium bath. In two patients, owing to biochemical hypocalcaemic episodes, the dialysate calcium concentration was increased to 1.75 mmol/l. One patient became hypercalcaemic and received calcitonin for bone pain secondary to osteoporosis and was dialysed against a 1.0 mmol/l calcium bath. Including an evaluation of dietary intake, all four patients had a net positive calcium balance, ranging from 5.1 mmol/m2 body surface area (BSA) per day to 24.3 mmol/m2 BSA per day. A significant reduction in the pre-dialysis phosphate level was observed in all four patients, such that none required dietary restrictions or phosphate binders, and dialysate phosphate supplements of 0.8–2.03 mmol/l were employed to prevent hypophosphataemia. The (Ca×PO4) dropped below 4.4 mmol2 l−2 in all four patients. Concurrently, significant reductions in intact PTH levels were seen in all four patients, but the level dropped to below normal range in two. In our cohort of patients, NHD rapidly lowered plasma phosphate and PTH levels, and additional dialysate phosphate and possibly calcium may be necessary to prevent bone demineralisation due to chronic losses and to prevent oversuppression of PTH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mathias R, Salusky IB, Harman WH, Paredes A, Emans J, Segre G, Goodman W (1993) Renal bone disease in pediatric patients and young adults treated by hemodialysis in a children’s hospital. J Am Soc Nephrol 12:1938–1946

    Google Scholar 

  2. Spalding EM, Chamney PW, Farrington K (2002) Phosphate kinetics during haemodialysis: evidence for biphasic regulation. Kidney Int 61:655–667

    Article  CAS  Google Scholar 

  3. Fajardo L, Campistrús, Ríos P, Góomez T (2003) Evolution of serum phosphate in long intermittent haemodialysis. Kidney Int 63 [Suppl 85]:S66–S68

    Article  Google Scholar 

  4. Lindsay RM, Alhejaili F, Nesrallah G, Leitch R, Clement L, Heidenheim AP, Kortas C (2003) Calcium and phosphate balance with quotidian hemodialysis. Am J Kidney Dis 42:24–29

    Article  Google Scholar 

  5. Al-Hejaili F, Kortas C, Leitch R, Heidenheim PA, Clement L, Nesrallah G, Lindsay RM (2003) Nocturnal but not short hours quotidian hemodialysis requires an elevated dialysate calcium concentration. J Am Soc Nephrol 14:2322–2328

    Article  CAS  Google Scholar 

  6. Pierratos A (2004) Daily nocturnal hemodialysis. Kidney Int 65:1975–1986

    Article  Google Scholar 

  7. Geary DF, Piva E, Gajaria M, Tyrrel J, Picone G, Harvey E (2004) Development of a nocturnal home hemodialysis (NHHD) program for children. Semin Dial 17:115–117

    Article  Google Scholar 

  8. Simonsen O (2000) Slow nocturnal dialysis as a rescue treatment for children and young patients with end-stage renal failure. J Am Soc Nephrol 11:327A

    Google Scholar 

  9. Geary DF, Piva E, Tyrrel J, Gajaria MJ, Picone G, Keating LE, Harvey EA (2005) Home nocturnal hemodialysis in children. J Pediatr 147:383–387

    Article  Google Scholar 

  10. Fischbach M, Edefonti A, Schröder C, Watson A, The European Pediatric Dialysis Working Group (2005) Hemodialysis in children: general practical guidelines. Pediatr Nephrol 20:1054–1066

    Article  CAS  Google Scholar 

  11. Fischbach M, Boudailliez B, Foulard M (1997) Phosphate end dialysis value: a misleading parameter of hemodialysis efficiency. Pediatr Nephrol 11:193–195

    Article  CAS  Google Scholar 

  12. Pogglitsch H, Estelberger W, Petek W, Zitta S, Ziak E (1989) Relationship between generation and plasma concentration of inorganic phosphorous. In vivo studies in dialysis patients and in vitro studies on erythrocytes. Int J Artif Organs 12:524–532

    Article  CAS  Google Scholar 

  13. Fischbach M, Hamel G, Simeoni U, Geisert J (1992) Phosphate dialytic removal: enhancement of phosphate cellular clearance by biofiltration (with acetate-free buffer dialysate). Nephron 62:155–160

    Article  CAS  Google Scholar 

  14. Bose S, French S, Evans FJ, Joubert F, Balaban RS (2003) Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate. J Biol Chem 278:39155–39165

    Article  CAS  Google Scholar 

  15. Lotz M, Zisman E, Bartter FC (1968) Evidence for phosphorus depletion syndrome in man. N Eng J Med 278:409–415

    Article  CAS  Google Scholar 

  16. Anderson PT, Toft E, Hansen AK, Sinkjaer T (1991) Postoperative hypophosphataemia and muscle function. Br J Surg 78:114–116

    Article  Google Scholar 

  17. Hinken AC, McDonald KS (2004) Inorganic phosphate speeds loaded shortening in rat skinned cardiac myocytes. Am J Physiol Cell Physiol 287:C500–C507

    Article  CAS  Google Scholar 

  18. Salusky IB, Kuizon BG, Jüppner H (2004) Special aspects of renal osteodystrophy in children. Semin Nephrol 24:69–77

    Article  Google Scholar 

  19. Solal ME, Sebert JL, Boudailliez B, Marie A, Moriniere P, Gueris J, Bouillan R, Fournier A (1991) Comparison of intact, midregion, and carboxy-terminal assays of parathyroid hormone for the diagnosis of bone disease in hemodialyzed patients. J Clin Endocrinol Metab 73:516–524

    Article  CAS  Google Scholar 

  20. Qi Q, Monier-Faugere MC, Geng Z, Malluche HH (1995) Predictive value of serum parathyroid hormone levels for bone turnover in patients on chronic maintenance dialysis. Am J Kidney Dis 26:622–631

    Article  CAS  Google Scholar 

  21. Waller S, Ridout D, Cantor T, Rees L (2005) Differences between “intact” PTH and 1–84 PTH assays in chronic renal failure and dialysis. Pediatr Nephrol 20:197–199

    Article  Google Scholar 

  22. Clinical practice guidelines for bone metabolism and disease in chronic kidney disease (2002) Guideline 1. Evaluation of calcium and phosphorous metabolism. NKF K/DOQI guidelines

  23. Kurz P, Monier-Faugere MC, Bognar B, Werner E, Roth P, Vlachojannis J, Malluche HH (1994) Evidence of abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int 46:855–861

    Article  CAS  Google Scholar 

  24. Moe SM, Chen NX (2003) Calciphylaxis and vascular calcification: a continuum of extra-skeletal osteogenesis. Pediatr Nephrol 18:969–975

    Article  Google Scholar 

  25. Kuizon BD, Salusky IB (2002) Cell biology of renal osteodystrophy. Pediatr Nephrol 17:777–789

    Article  Google Scholar 

  26. Amann K, Ritz E, Wiest G, Klaus G, Mall G (1994) A role of parathyroid hormone for the activation of cardiac fibroblasts in uremia. J Am Soc Nephrol 4:1814–1819

    CAS  PubMed  Google Scholar 

  27. Querfeld U (2004) The clinical significance of vascular calcification in young patients with end-stage renal disease. Pediatr Nephrol 19:478–484

    Article  Google Scholar 

  28. Spasovski GB, Bervoets AR, Behets GJ, Ivanovski N, Sikole A, Dams G, Couttenye MM, De Broe ME, D’Haese PC (2003) Spectrum of renal bone disease in end-stage renal failure patients not yet on dialysis. Nephrol Dial Transplant 18:1159–1166

    Article  CAS  Google Scholar 

  29. Langman CB, Mazur AT, Baron R, Norman ME (1982) 25-Hydroxyvitamin D3 (calcifediol) therapy of juvenile renal osteodystrophy: beneficial effect on linear growth velocity. J Pediatr 100:815–882

    Article  CAS  Google Scholar 

  30. Song Y, Kato S, Fleet JC (2003) Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA. J Nutr 133:374–380

    Article  CAS  Google Scholar 

  31. Salusky IB, Kuizon BD, Belin TR, Ramirez JA, Gales B, Segre GV, Goodman WG (1998) Intermittent calcitriol therapy in secondary hyperparathyroidism: a comparison between oral and intraperitoneal administration. Kidney Int 54:907–914

    Article  CAS  Google Scholar 

  32. Logue FC, Fraser WD, O’Reilly DS, Cameron DA, Kelly AJ, Beastall GH (1990) The circadian rhythm of intact parathyroid hormone- (1–84): temporal correlation with prolactin secretion in normal men. J Clin Endocrinol Metab 71:1556–1560

    Article  CAS  Google Scholar 

  33. Fraser WD, Logue FC, Christie JP, Gallacher SJ, Cameron D, O’Reilly DS, Beastall GH, Boyle IT (1998) Alteration of the circadian rhythm of intact parathyroid hormone and serum phosphate in women with established postmenopausal osteoporosis. Osteoporos Int 8:121–126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daljit K. Hothi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hothi, D.K., Harvey, E., Piva, E. et al. Calcium and phosphate balance in adolescents on home nocturnal haemodialysis. Pediatr Nephrol 21, 835–841 (2006). https://doi.org/10.1007/s00467-006-0048-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0048-z

Keywords

Navigation