Skip to main content
Log in

The effects of combined epidural and general anesthesia on the autonomic nervous system and bioavailability of nitric oxide in patients undergoing laparoscopic pelvic surgery

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Pneumoperitoneum during laparoscopic surgery is known to affect visceral blood flow and result in oxidative stress. Whether epidural anesthesia will effectively reduce visceral ischemia and oxidative stress by blocking the sympathetic nervous system (SNS) during laparoscopic surgery has not been proven.

Methods

Forty-five patients who were to undergo robot-assisted laparoscopic prostatectomy were randomly assigned to the combined general–epidural anesthesia group (group GE, n = 22) or to the general anesthesia group (group G, n = 23). Blood pressure, heart rate, and the balance between sympathetic and parasympathetic nervous system activity as measured by heart rate variability were recorded at 10 min after induction of anesthesia (T1), 60 (T2) and 120 (T3) min after intra-abdominal CO2 insufflation, and 10 min after returning the patient to the supine position following CO2 exsufflation (T4). Arterial blood gas analysis and blood sampling for measurements of nitrite (NO2−) and malondialdehyde (MDA) were performed at all time points.

Results

Intraoperative mean blood pressure was significantly lower in group GE compared with group G. The low-frequency to high-frequency ratio was significantly increased after induction of pneumoperitoneum in group G but was unchanged in group GE. Plasma levels of nitrite decreased after pneumoperitoneum induction in group G while there was no change in group GE. A significant increase in MDA levels was seen in group G after pneumoperitoneum induction and were higher than group GE at T3 and T4. The 24-h urine output was higher in group GE than in group G on POD 1. The 24-h CrCl was higher in group GE on POD 1 but was not different between groups on POD 2.

Conclusions

Combined epidural and general anesthesia effectively blocks SNS stimulation during laparoscopic surgery and reduces NO inactivation and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reynolds W Jr (2001) The first laparoscopic cholecystectomy. JSLS 5:89–94

    PubMed  Google Scholar 

  2. Wellwood J, Sculpher MJ, Stoker D, Nicholls GJ, Geddes C, Whitehead A, Singh R, Spiegelhalter D (1998) Randomised controlled trial of laparoscopic versus open mesh repair for inguinal hernia: outcome and cost. BMJ 317:103–110

    Article  PubMed  CAS  Google Scholar 

  3. Zacks SL, Sandler RS, Rutledge R, Brown RS Jr (2002) A population-based cohort study comparing laparoscopic cholecystectomy and open cholecystectomy. Am J Gastroenterol 97:334–340

    Article  PubMed  Google Scholar 

  4. Bickel A, Kukuev E, Popov O, Ivry S, Roguin N, Yahalom M, Eitan A (2005) Power spectral analysis of heart rate variability during helium pneumoperitoneum: the mechanism of increased cardiac sympathetic activity and its clinical significance. Surg Endosc 19:71–76

    Article  PubMed  CAS  Google Scholar 

  5. Bickel A, Yahalom M, Roguin N, Frankel R, Breslava J, Ivry S, Eitan A (2002) Power spectral analysis of heart rate variability during positive pressure pneumoperitoneum: the significance of increased cardiac sympathetic expression. Surg Endosc 16:1341–1344

    Article  PubMed  CAS  Google Scholar 

  6. Sato N, Kawamoto M, Yuge O, Suyama H, Sanuki M, Matsumoto C, Inoue K (2000) Effects of pneumoperitoneum on cardiac autonomic nervous activity evaluated by heart rate variability analysis during sevoflurane, isoflurane, or propofol anesthesia. Surg Endosc 14:362–366

    Article  PubMed  CAS  Google Scholar 

  7. Altintas F, Tunali Y, Bozkurt P, Kaya G, Uygun N, Aricioglu F, Hacibekiroglu M (2001) An experimental study on the relationship of intra-abdominal pressure and renal ischemia. Middle East J Anesthesiol 16:55–66

    PubMed  CAS  Google Scholar 

  8. Melville RJ, Forsling ML, Frizis HI, LeQuesne LP (1985) Stimulus for vasopressin release during elective intra-abdominal operations. Br J Surg 72:979–982

    Article  PubMed  CAS  Google Scholar 

  9. Kaya Y, Coskun T, Demir MA, Var A, Ozsoy Y, Aydemir EO (2002) Abdominal insufflation-deflation injury in small intestine in rabbits. Eur J Surg 168:410–417

    Article  PubMed  Google Scholar 

  10. Pross M, Schulz HU, Flechsig A, Manger T, Halangk W, Augustin W, Lippert H, Reinheckel T (2000) Oxidative stress in lung tissue induced by CO(2) pneumoperitoneum in the rat. Surg Endosc 14:1180–1184

    Article  PubMed  CAS  Google Scholar 

  11. Chowdhary S, Vaile JC, Fletcher J, Ross HF, Coote JH, Townend JN (2000) Nitric oxide and cardiac autonomic control in humans. Hypertension 36:264–269

    Article  PubMed  CAS  Google Scholar 

  12. Harris KF, Matthews KA (2004) Interactions between autonomic nervous system activity and endothelial function: a model for the development of cardiovascular disease. Psychosom Med 66:153–164

    Article  PubMed  Google Scholar 

  13. Tesfamariam B, Weisbrod RM, Cohen RA (1987) Endothelium inhibits responses of rabbit carotid artery to adrenergic nerve stimulation. Am J Physiol 253:H792–H798

    PubMed  CAS  Google Scholar 

  14. Sammour T, Mittal A, Loveday BP, Kahokehr A, Phillips AR, Windsor JA, Hill AG (2009) Systematic review of oxidative stress associated with pneumoperitoneum. Br J Surg 96:836–850

    Article  PubMed  CAS  Google Scholar 

  15. Glantzounis GK, Tselepis AD, Tambaki AP, Trikalinos TA, Manataki AD, Galaris DA, Tsimoyiannis EC, Kappas AM (2001) Laparoscopic surgery-induced changes in oxidative stress markers in human plasma. Surg Endosc 15:1315–1319

    Article  PubMed  CAS  Google Scholar 

  16. Ali NA, Eubanks WS, Stamler JS, Gow AJ, Lagoo-Deenadayalan SA, Villegas L, El-Moalem HE, Reynolds JD (2005) A method to attenuate pneumoperitoneum-induced reductions in splanchnic blood flow. Ann Surg 241:256–261

    Article  PubMed  Google Scholar 

  17. Shimazutsu K, Uemura K, Auten KM, Baldwin MF, Belknap SW, La Banca F, Jones MC, McClaine DJ, McClaine RJ, Eubanks WS, Stamler JS, Reynolds JD (2009) Inclusion of a nitric oxide congener in the insufflation gas repletes S-nitrosohemoglobin and stabilizes physiologic status during prolonged carbon dioxide pneumoperitoneum. Clin Transl Sci 2:405–412

    Article  PubMed  CAS  Google Scholar 

  18. Abassi Z, Bishara B, Karram T, Khatib S, Winaver J, Hoffman A (2008) Adverse effects of pneumoperitoneum on renal function: involvement of the endothelin and nitric oxide systems. Am J Physiol Regul Integr Comp Physiol 294:R842–R850

    Article  PubMed  CAS  Google Scholar 

  19. Bishara B, Abu-Saleh N, Awad H, Goltsman I, Ramadan R, Khamaysi I, Abassi Z (2011) Pneumoperitoneum aggravates renal function in cases of decompensated but not compensated experimental congestive heart failure: role of nitric oxide. J Urol 186:310–317

    Article  PubMed  CAS  Google Scholar 

  20. Kabon B, Fleischmann E, Treschan T, Taguchi A, Kapral S, Kurz A (2003) Thoracic epidural anesthesia increases tissue oxygenation during major abdominal surgery. Anesth Analg 97:1812–1817

    Article  PubMed  Google Scholar 

  21. Freise H, Van Aken HK (2011) Risks and benefits of thoracic epidural anaesthesia. Br J Anaesth 107:859–868

    Article  PubMed  CAS  Google Scholar 

  22. Berntson GG, Bigger JT Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Nagaraja HN, Porges SW, Saul JP, Stone PH, van der Molen MW (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34:623–648

    Article  PubMed  CAS  Google Scholar 

  23. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  24. Frumento RJ, Logginidou HG, Wahlander S, Wagener G, Playford HR, Sladen RN (2006) Dexmedetomidine infusion is associated with enhanced renal function after thoracic surgery. J Clin Anesth 18:422–426

    Article  PubMed  CAS  Google Scholar 

  25. Demyttenaere S, Feldman LS, Fried GM (2007) Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc 21:152–160

    Article  PubMed  Google Scholar 

  26. Moody WE, Edwards NC, Madhani M, Chue CD, Steeds RP, Ferro CJ, Townend JN (2012) Endothelial dysfunction and cardiovascular disease in early-stage chronic kidney disease: cause or association? Atherosclerosis 223(1):86–94

    Article  PubMed  CAS  Google Scholar 

  27. Hoffman RM (2011) Clinical practice. Screening for prostate cancer. N Engl J Med 365:2013–2019

    Article  PubMed  CAS  Google Scholar 

  28. Hirvonen EA, Poikolainen EO, Paakkonen ME, Nuutinen LS (2000) The adverse hemodynamic effects of anesthesia, head-up tilt, and carbon dioxide pneumoperitoneum during laparoscopic cholecystectomy. Surg Endosc 14:272–277

    Article  PubMed  CAS  Google Scholar 

  29. Horvath KD, Whelan RL, Lier B, Viscomi S, Barry L, Buck K, Bessler M (1998) The effects of elevated intraabdominal pressure, hypercarbia, and positioning on the hemodynamic responses to laparoscopic colectomy in pigs. Surg Endosc 12:107–114

    Article  PubMed  CAS  Google Scholar 

  30. Hirvonen EA, Nuutinen LS, Kauko M (1995) Hemodynamic changes due to Trendelenburg positioning and pneumoperitoneum during laparoscopic hysterectomy. Acta Anaesthesiol Scand 39:949–955

    Article  PubMed  CAS  Google Scholar 

  31. Rist M, Hemmerling TM, Rauh R, Siebzehnrubl E, Jacobi KE (2001) Influence of pneumoperitoneum and patient positioning on preload and splanchnic blood volume in laparoscopic surgery of the lower abdomen. J Clin Anesth 13:244–249

    Article  PubMed  CAS  Google Scholar 

  32. Modlinger PS, Wilcox CS, Aslam S (2004) Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin Nephrol 24:354–365

    Article  PubMed  CAS  Google Scholar 

  33. Jover B, Mimran A (2001) Nitric oxide inhibition and renal alterations. J Cardiovasc Pharmacol 38(Suppl 2):S65–S70

    Article  PubMed  CAS  Google Scholar 

  34. Luo CF, Tsai YF, Chang CH, Wu CT, Yu HP (2011) Increased oxidative stress and gut ischemia caused by prolonged pneumoperitoneum in patients undergoing robot-assisted laparoscopic radical prostatectomy. Acta Anaesthesiol Taiwan 49:46–49

    Article  PubMed  Google Scholar 

  35. Chaswal M, Das S, Prasad J, Katyal A, Fahim M (2011) Cardiac autonomic function in acutely nitric oxide deficient hypertensive rats: role of the sympathetic nervous system and oxidative stress. Can J Physiol Pharmacol 89(12):865–874

    Article  CAS  Google Scholar 

  36. Bishara B, Ramadan R, Karram T, Awad H, Abu-Saleh N, Winaver J, Assadi A, Abassi Z (2010) Nitric oxide synthase inhibition aggravates the adverse renal effects of high but not low intraabdominal pressure. Surg Endosc 24:826–833

    Article  PubMed  Google Scholar 

  37. Bishara B, Karram T, Khatib S, Ramadan R, Schwartz H, Hoffman A, Abassi Z (2009) Impact of pneumoperitoneum on renal perfusion and excretory function: beneficial effects of nitroglycerine. Surg Endosc 23:568–576

    Article  PubMed  Google Scholar 

  38. Akbulut G, Polat C, Aktepe F, Yilmaz S, Kahraman A, Serteser M, Gokce C, Gokce O (2004) The oxidative effect of prolonged CO2 pneumoperitoneum on renal tissue of rats. Surg Endosc 18:1384–1388

    Article  PubMed  CAS  Google Scholar 

  39. Bentes de Souza AM, Rogers MS, Wang CC, Yuen PM, Ng PS (2003) Comparison of peritoneal oxidative stress during laparoscopy and laparotomy. J Am Assoc Gynecol Laparosc 10:65–74

    Article  PubMed  Google Scholar 

  40. Badner NH, Knill RL, Brown JE, Novick TV, Gelb AW (1998) Myocardial infarction after noncardiac surgery. Anesthesiology 88:572–578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A102065-39).

Disclosures

Drs. Seokyung Shin, Sun Joon Bai, Koon Ho Rha, Yun So, and Young Jun Oh have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Jun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, S., Bai, S.J., Rha, K.H. et al. The effects of combined epidural and general anesthesia on the autonomic nervous system and bioavailability of nitric oxide in patients undergoing laparoscopic pelvic surgery. Surg Endosc 27, 918–926 (2013). https://doi.org/10.1007/s00464-012-2536-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-012-2536-5

Keywords

Navigation