Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Neuromuscular Specializations of the Human Hypopharyngeal Muscles

  • Review
  • Published:
Dysphagia Aims and scope Submit manuscript

This article was retracted on 31 October 2022

This article has been updated

Abstract

The hypopharyngeal muscles in humans play a vital role in swallowing, speech, and respiration. Increasing evidence indicates that these muscles are specialized to perform life-sustaining upper aerodigestive functions. This review aims to provide current knowledge regarding the key structural, physiological, and biochemical features of the hypopharyngeal muscles, including innervation, contractile properties, histochemistry, biochemical properties, myosin heavy chain (MyHC) expression and regulation, and age-related alterations. These would clarify the unique neuromuscular specializations of the human hypopharyngeal muscles for a better understanding of the functions and pathological conditions of the pharynx and for the development of novel therapies to treat related upper airway disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

Abbreviations

ALS:

Amyotrophic lateral sclerosis

CP:

Cricopharyngeus

CPh:

Horizontal compartment of CP muscle

CPM:

Cranial paraxial mesoderm

CPo:

Oblique compartment of CP muscle

CTP:

Cricothyropharyngeus

EMG:

Electromyogram

EOM:

Extraocular muscle

OL:

Fast-outer layer

IPC:

Inferior pharyngeal constrictor

mATPase:

Myofibrillar ATPase

MPC:

Middle pharyngeal constrictor

MPM:

Mesenchymal paraxial mesoderm

MyHC:

Myosin heavy chain

MyHC-α:

α-Cardiac MyHC

MyHC-emb:

Embryonic MyHC

MyHC-new:

Neonatal MyHC

MyHC-ton:

Slow tonic MyHC

NADH-TR:

NADH-tetrazolium reductase

NMC:

Neuromuscular compartment

NMJ:

Neuromuscular junction

OPMD:

Oculopharyngeal muscular dystrophy

PAM:

Paraxial mesoderm

PC:

Pharyngeal constrictor

PEN:

Pharyngoesophageal nerve

PM:

Pharyngeal mesoderm

PSC:

Pharyngeal satellite cell

RLN:

Recurrent laryngeal nerve

SC:

Satellite cell

SDH:

Succinic dehydrogenase

SERCA:

Sarcoplasmic reticulum Ca2+ ATPase

SIL:

Slow inner layer

SLN:

Superior laryngeal nerve

SNA:

Subneural apparatus

SPC:

Superior pharyngeal constrictor

TP:

Thyropharyngeus

UE:

Upper esophagus

UES:

Upper esophageal sphincter

V:

Trigeminal nerve

VII:

Facial nerve

IX:

Glossopharyngeal nerve

X:

Vagus nerve

XI:

Accessory nerve

XII:

Hypoglossal nerve

References

  1. Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114(12):2226–44.

    Article  PubMed  Google Scholar 

  2. Cunningham ET, Jones B. Anatomical and physiological overview. In: Jones B, editor. Normal and abnormal swallowing. New York: Springer; 2003. p. 11–34.

    Chapter  Google Scholar 

  3. Dodds WJ, Stewart ET, Logemann JA. Physiology and radiology of the normal oral and pharyngeal phases of swallowing. AJR Am J Roentgenol. 1990;154(5):953–63.

    Article  PubMed  CAS  Google Scholar 

  4. Miller AJ. The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev. 2008;14(2):77–86.

    Article  PubMed  Google Scholar 

  5. Vinney LA, Connor NP. Structure and function of the laryngeal and pharyngeal muscles. In: McLoon LK, Andrade F, editors. Craniofacial muscles. New York, NY: Springer; 2012. p. 141–66.

    Chapter  Google Scholar 

  6. Sciote JJ, Horton MJ, Rowlerson AM, Link J. Specialized cranial muscles: how different are they from limb and abdominal muscles? Cells Tissues Organs. 2003;174(1–2):73–86.

    Article  PubMed  Google Scholar 

  7. McLoon LK, Thorstenson KM, Solomon A, Lewis MP. Myogenic precursor cells in craniofacial muscles. Oral Dis. 2007;13(2):134–40.

    Article  PubMed  CAS  Google Scholar 

  8. Fischer MD, Budak MT, Bakay M, Gorospe JR, Kjellgren D, Pedrosa-Domellof F, Hoffman EP, Khurana TS. Definition of the unique human extraocular muscle allotype by expression profiling. Physiol Genomics. 2005;22(3):283–91.

    Article  PubMed  CAS  Google Scholar 

  9. Spencer RF, Porter JD. Biological organization of the extraocular muscles. Prog Brain Res. 2006;151:43–80.

    Article  PubMed  Google Scholar 

  10. Shinners MJ, Goding GS, McLoon LK. Effect of recurrent laryngeal nerve section on the laryngeal muscles of adult rabbits. Otolaryngol Head Neck Surg. 2006;134(3):413–8.

    Article  PubMed  Google Scholar 

  11. Thomas LB, Harrison AL, Stemple JC. Aging thyroarytenoid and limb skeletal muscle: lessons in contrast. J Voice. 2008;22(4):430–50.

    Article  PubMed  Google Scholar 

  12. Bothe I, Dietrich S. The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev Dyn. 2006;235(10):2845–60.

    Article  PubMed  CAS  Google Scholar 

  13. Kuratani S. Craniofacial development and the evolution of the vertebrates: the old problems on a new background. Zoolog Sci. 2005;22(1):1–19.

    Article  PubMed  Google Scholar 

  14. Harel I, Maezawa Y, Avraham R, Rinon A, Ma HY, Cross JW, et al. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proc Natl Acad Sci USA. 2012;109(46):18839–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tzahor E. Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev Biol. 2009;327(2):273–9.

    Article  PubMed  CAS  Google Scholar 

  16. Mootoosamy RC, Dietrich S. Distinct regulatory cascades for head and trunk myogenesis. Development. 2002;129(3):573–83.

    Article  PubMed  CAS  Google Scholar 

  17. Standring S, Ellis H, Healy JC, Johnson D, Williams A, Colins P, et al editors. Gray’s anatomy. 39th ed. Amsterdam: Elsevier Churchill Livingstone Ltd; 2005. p. 295–7.

    Google Scholar 

  18. Mu L, Sanders I. Neuromuscular specializations within human pharyngeal constrictor muscles. Ann Otol Rhinol Laryngol. 2007;116(8):604–17.

    Article  PubMed  Google Scholar 

  19. Bonington A, Mahon M, Whitmore I. A histological and histochemical study of the cricopharyngeus muscle in man. J Anat. 1988;156:27.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Mu L, Sanders I. The innervation of the human upper esophageal sphincter. Dysphagia. 1996;11(4):234–8.

    Article  PubMed  CAS  Google Scholar 

  21. Mu L, Sanders I. Newly revealed cricothyropharyngeus muscle in the human laryngopharynx. Anat Rec (Hoboken). 2008;291(8):927–38.

    Article  Google Scholar 

  22. Mu L, Sanders I. Neuromuscular compartments and fiber-type regionalization in the human inferior pharyngeal constrictor muscle. Anat Rec. 2001;264(4):367–77.

    Article  PubMed  CAS  Google Scholar 

  23. Brownlow H, Whitmore I, Willan PL. A quantitative study of the histochemical and morphometric characteristics of the human cricopharyngeus muscle. J Anat. 1989;166:67–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Goyal RK, Martin SB, Shapiro J, Spechler SJ. The role of cricopharyngeus muscle in pharyngoesophageal disorders. Dysphagia. 1993;8(3):252–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lang IM. Upper esophageal sphincter. GI Motility online. 2006.

  26. Mu L, Sanders I. Neuromuscular organization of the human upper esophageal sphincter. Ann Otol Rhinol Laryngol. 1998;107(5 Pt 1):370–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ertekin C, Aydogdu I. Electromyography of human cricopharyngeal muscle of the upper esophageal sphincter. Muscle Nerve. 2002;26(6):729–39.

    Article  PubMed  Google Scholar 

  28. Kuna ST. Respiratory-related activation and mechanical effects of the pharyngeal constrictor muscles. Respir Physiol. 2000;119(2–3):155–61.

    Article  PubMed  CAS  Google Scholar 

  29. Rowe LD, Miller AJ, Chierici G, Clendenning D. Adaptation in the function of pharyngeal constrictor muscles. Otolaryngol Head Neck Surg. 1984;92(4):392–401.

    Article  PubMed  CAS  Google Scholar 

  30. O’Halloran KD, Herman JK, Bisgard GE. Respiratory-related pharyngeal constrictor muscle activity in awake goats. Respir Physiol. 1999;116(1):9–23.

    Article  PubMed  Google Scholar 

  31. Feroah TR, Forster HV, Pan LG, Rice T. Reciprocal activation of hypopharyngeal muscles and their effect on upper airway area. J Appl Physiol. 2000;88(2):611–26.

    Article  PubMed  CAS  Google Scholar 

  32. Rothstein RJ, Narce SL, deBerry-Borowiecki BE, Blanks RH. Respiratory-related activity of upper airway muscles in anesthetized rabbit. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(6):1830–6.

    PubMed  CAS  Google Scholar 

  33. Kawasaki M, Ogura JH, Takenouchi S. Neurophysiologic observations of normal deglutition: II. Its relationship to allied phenomena. Laryngoscope. 1964;74:1766–80.

    PubMed  CAS  Google Scholar 

  34. Murakami Y. Respiratory activity of the external laryngeal muscles: an electromyographic study in the cat. Ventil Phonatory Control. 1974;82:430–48.

    Google Scholar 

  35. Sherrey JH, Pollard MJ, Megirian D. Respiratory functions of the inferior pharyngeal constrictor and sternohyoid muscles during sleep. Exp Neurol. 1986;92(1):267–77.

    Article  PubMed  CAS  Google Scholar 

  36. Iizuka M. Respiratory activity in glossopharyngeal, vagus and accessory nerves and pharyngeal constrictors in newborn rat in vitro. J Physiol. 2001;532(Pt 2):535–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vilkman E, Sonninen A, Hurme P, Körkkö P. External laryngeal frame function in voice production revisited: a review. J Voice. 1996;10(1):78–92.

    Article  PubMed  CAS  Google Scholar 

  38. Hirano M. The function of the intrinsic laryngeal muscles in singing. In: Stevens K, Hirano M, editors. Vocal fold physiology. Tokyo: University of Tokyo Press; 1981. p. 155–67.

    Google Scholar 

  39. Sakamoto Y. Interrelationships between the innervations from the laryngeal nerves and the pharyngeal plexus to the inferior pharyngeal constrictor. Surg Radiol Anat. 2013;35(8):721–8.

    Article  PubMed  Google Scholar 

  40. Mu L, Sanders I. Neuromuscular specializations of the pharyngeal dilator muscles: II. Compartmentalization of the canine genioglossus muscle. Anat Rec. 2000;260(3):308–25.

    Article  PubMed  CAS  Google Scholar 

  41. Mu L, Sanders I. Sensory nerve supply of the human oro- and laryngopharynx: a preliminary study. Anat Rec. 2020;258(4):406–20.

    Article  Google Scholar 

  42. Kobler JB, Datta S, Goyal RK, Benecchi EJ. Innervation of the larynx, pharynx, and upper esophageal sphincter of the rat. J Comp Neurol. 1994;349(1):129–47.

    Article  PubMed  CAS  Google Scholar 

  43. Medda BK, Lang IM, Dodds WJ, Christl M, Kern M, Hogan WJ, Shaker R. Correlation of electrical and contractile activities of the cricopharyngeus muscle in the cat. Am J Physiol. 1997;273(2 Pt 1):G470–9.

    PubMed  CAS  Google Scholar 

  44. Brok HA, Copper MP, Stroeve RJ, de Visser BWO, Venker-van Haagen AJ, Schouwenburg PF. Evidence for recurrent laryngeal nerve contribution in motor innervation of the human cricopharyngeal muscle. Laryngoscope. 1999;109(5):705–8.

    Article  PubMed  CAS  Google Scholar 

  45. Fukushima SI, Shingai T, Kitagawa JI, Takahashi Y, Taguchi Y, Noda T, Yamada Y. Role of the pharyngeal branch of the vagus nerve in laryngeal elevation and UES pressure during swallowing in rabbits. Dysphagia. 2003;18(1):58–63.

    Article  PubMed  Google Scholar 

  46. Levitt MN, Dedo HH, Ogura JH. The cricopharyngeus muscle, an electromyographic study in the dog. Laryngoscope. 1965;75:122–36.

    Article  PubMed  CAS  Google Scholar 

  47. Lund WS. A study of the cricopharyngeal sphincter in man and in the dog. Ann R Coll Surg Engl. 1965;37(4):225–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Fukunaga Y, Higashino M, Osugi H, Tokuhara T, Kinoshita H. Function of the upper esophageal sphincter after denervation of recurrent laryngeal nerves and intramural nerves of the cervical esophagus in dogs. Nihon Geka Gakkai Zasshi. 1994;95(9):643–54.

    PubMed  CAS  Google Scholar 

  49. Wilson JA, Pryde A, White A, Maher L, Maran AGD. Swallowing performance in patients with vocal fold motion impairment. Dysphagia. 1995;10(3):149–54.

    Article  PubMed  CAS  Google Scholar 

  50. Sasaki CT, Sims HS, Kim YH, Czibulka A. Motor innervation of the human cricopharyngeus muscle. Ann Otol Rhinol Laryngol. 1999;108(12):1132–9.

    Article  PubMed  CAS  Google Scholar 

  51. Hammond CS, Davenport PW, Hutchison A, Otto RA. Motor innervation of the cricopharyngeus muscle by the recurrent laryngeal nerve. J Appl Physiol. 1997;83(1):89–94.

    Article  PubMed  CAS  Google Scholar 

  52. English AW, Wolf SL, Segal RL. Compartmentalization of muscles and their motor nuclei: the partitioning hypothesis. Phys Ther. 1993;73(12):857–67.

    Article  PubMed  CAS  Google Scholar 

  53. Segal RL, Wolf SL, DeCamp MJ, Chopp MT, English AW. Anatomical partitioning of three multiarticular human muscles. Acta Anat (Basel). 1991;142(3):261–6.

    Article  CAS  Google Scholar 

  54. Korfage JA, Van Eijden TM. Regional differences in fibre type composition in the human temporalis muscle. J Anat. 1999;194(Pt 3):355–62.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lexell J, Jarvis JC, Currie J, Downham DY, Salmons S. Fibre type composition of rabbit tibialis anterior and extensor digitorum longus muscles. J Anat. 1994;185(Pt 1):95–101.

    PubMed  PubMed Central  Google Scholar 

  56. Wasicky R, Ziya-Ghazvini F, Blumer R, Lukas JR, Mayr R. Muscle fiber types of human extraocular muscles: a histochemical and immunohistochemical study. Invest Ophthalmol Vis Sci. 2000;41(5):980–90.

    PubMed  CAS  Google Scholar 

  57. Zaretsky LS, Sanders I. The three bellies of the canine cricothyroid muscle. Ann Otol Rhinol Laryngol Supp. 1992;156:3–16.

    Article  CAS  Google Scholar 

  58. Burke RE. Motor units: anatomy, physiology, and functional organization. Compr Physiol. 2011;2:345–422.

    Google Scholar 

  59. Porter JD, Baker RS. Muscles of a different “color”: the unusual properties of the extraocular muscles may predispose or protect them in neurogenic and myogenic disease. Neurology. 1996;46(1):30–7.

    Article  PubMed  CAS  Google Scholar 

  60. Dutta CR, Basmajian JV. Gross and histological structure of the pharyngeal constrictors in the rabbit. Anat Rec. 1960;137:127–34.

    Article  PubMed  CAS  Google Scholar 

  61. Hyodo M, Aibara R, Kawakita S, Yumoto E. Histochemical study of the canine inferior pharyngeal constrictor muscle: implications for its function. Acta Otolaryngol. 1998;118(2):272–9.

    Article  PubMed  CAS  Google Scholar 

  62. Desaki J. The morphological variability of neuromuscular junctions in the rat extraocular muscles: a scanning electron microscopical study. Arch Histol Cytol. 1990;53(3):275–81.

    Article  PubMed  CAS  Google Scholar 

  63. Taguchi A, Hyodo M, Yamagata T, Gyo K, Desaki J. Age-related remodeling of the hypopharyngeal constrictor muscle and its subneural apparatuses: a scanning electron microscopical study in rats. Dysphagia. 2004;19(4):241–7.

    Article  PubMed  Google Scholar 

  64. Salpeter MM. Vertebrate neuromuscular junctions: general morphology, molecular organization, and functional consequences. Neurol Neurobiol. 1987;23:1–54.

    Google Scholar 

  65. Périé S, St Guily JL, Callard P, Sebille A. Innervation of adult human laryngeal muscle fibers. J Neurol Sci. 1997;149(1):81–6.

    Article  PubMed  Google Scholar 

  66. Hayakawa T, Kuwahara S, Maeda S, Tanaka K, Seki M. Calcitonin gene-related peptide immunoreactive neurons innervating the soft palate, the root of tongue, and the pharynx in the superior glossopharyngeal ganglion of the rat. J Chem Neuroanat. 2010;39(4):221–7.

    Article  PubMed  CAS  Google Scholar 

  67. Zelená J. Nerves and mechanoreceptors: the role of innervation in the development and maintenance of mammalian mechanoreceptors. New York: Springer; 1994.

    Google Scholar 

  68. Nagai T. The occurrence and ultrastructure of a mechanoreceptor in the human cricopharyngeus muscle. Eur Arch Otorhinolaryngol. 1991;248(3):144–6.

    Article  PubMed  CAS  Google Scholar 

  69. Lazarov NE. Neurobiology of orofacial proprioception. Brain Res Rev. 2007;56(2):362–83.

    Article  PubMed  Google Scholar 

  70. De Carlos F, Cobo J, Macías E, Feito J, Cobo T, Calavia MG, Garcia-Suarez O, Vega JA. The sensory innervation of the human pharynx: searching for mechanoreceptors. Anat Rec (Hoboken). 2013;296(11):1735–46.

    Article  Google Scholar 

  71. Lynch GS, Frueh BR, Williams DA. Contractile properties of single skinned fibres from the extraocular muscles, the levator and superior rectus, of the rabbit. J Physiol. 1994;475(2):337–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kristmundsdottir F, Mahon M, Froes MM, Cumming WJ. Histomorphometric and histopathological study of the human cricopharyngeus muscle: in health and in motor neuron disease. Neuropathol Appl Neurobiol. 1990;16(6):461–75.

    Article  PubMed  CAS  Google Scholar 

  73. Laurikainen E, Aitasalo K, Halonen P, Falck B, Kalimo H. Muscle pathology in idiopathic cricopharyngeal dysphagia. Enzyme histochemical and electron microscopic findings. Eur Arch Otorhinolaryngol. 1992;249(4):216–23.

    Article  PubMed  CAS  Google Scholar 

  74. Leese G, Hopwood D. Muscle fibre typing in the human pharyngeal constrictors and oesophagus: the effect of ageing. Acta Anat (Basel). 1986;127(1):77–80.

    Article  CAS  Google Scholar 

  75. Ibebunjo C, Srikant CB, Donati F. Duration of succinylcholine and vecuronium blockade but not potency correlates with the ratio of endplate size to fibre size in seven muscles in the goat. Can J Anaesth. 1996;43(5 Pt 1):485–94.

    Article  PubMed  CAS  Google Scholar 

  76. Sundman E, Ansved T, Margolin G, Kuylenstierna R, Eriksson LI. Fiber-type composition and fiber size of the human cricopharyngeal muscle and the pharyngeal constrictor muscle. Acta Anaesthesiol Scand. 2004;48(4):423–9.

    Article  PubMed  CAS  Google Scholar 

  77. Zenker VW. Vocal muscle fibers and their motor end-plates. Res Poten Voice Physiol. 1964;55(6):439–45.

    Google Scholar 

  78. Torigoe K, Nakamura T. Fine structure of myomyous junctions in the mouse skeletal muscles. Tissue Cell. 1987;19(2):243–50.

    Article  PubMed  CAS  Google Scholar 

  79. Hyodo M, Taguchi A, Yamagata T, Desaki J. A complex muscle fiber network in the cricothyroid muscle: a scanning electron microscopic study. Laryngoscope. 2007;117(4):600–3.

    Article  PubMed  Google Scholar 

  80. Hyodo M, Taguchi A, Yamagata T, Desaki J. Scanning electron microscopic study of the muscle fiber arrangement in the rat cricopharyngeal muscle. Acta Otolaryngol. 2005;125(9):976–80.

    Article  PubMed  Google Scholar 

  81. Periasamy M, Kalyanasundaram A. SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve. 2007;35(4):430–42.

    Article  PubMed  CAS  Google Scholar 

  82. Mu L, Su H, Wang J, Sanders I. Myosin heavy chain–based fiber types in the adult human cricopharyngeus muscle. Muscle Nerve. 2007;35(5):637–48.

    Article  PubMed  CAS  Google Scholar 

  83. Ryu S. A histochemical study of swallowing muscles in the inlet of the esophagus. Otologia Fukuoka. 1981;27:43–59.

    Google Scholar 

  84. Ahmed ME, Bando H, Fuse S, Abdelfattah HM, Ahmed ME, Ahmed MAK, et al. Differential isoform expression of SERCA and myosin heavy chain in hypopharyngeal muscles. Acta Otorhinolaryngol Ital. 2019;39(4):220–9.

    Article  Google Scholar 

  85. Mu L, Sanders I. Muscle fiber-type distribution pattern in the human cricopharyngeus muscle. Dysphagia. 2002;17(2):87–96.

    Article  PubMed  Google Scholar 

  86. Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ. Opening mechanisms of the human upper esophageal sphincter. Am J Physiol. 1989;257(5):G748–59.

    PubMed  CAS  Google Scholar 

  87. McConnel FM, Cerenko D, Mendelsohn MS. Manofluorographic analysis of swallowing. Otolaryngol Clin North Am. 1988;21(4):625–35.

    Article  PubMed  CAS  Google Scholar 

  88. Randolph ME, Luo Q, Ho J, Vest KE, Sokoloff AJ, Pavlath GK. Ageing and muscular dystrophy differentially affect murine pharyngeal muscles in a region-dependent manner. J Physiol. 2014;592(23):5301–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Shiotani A, Nakagawa H, Flint PW. Modulation of myosin heavy chains in rat laryngeal muscle. Laryngoscope. 2001;111(3):472–7.

    Article  PubMed  CAS  Google Scholar 

  90. Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol. 2013;45(10):2191–9.

    Article  PubMed  CAS  Google Scholar 

  91. Rosser BW, Norris BJ, Nemeth PM. Metabolic capacity of individual muscle fibers from different anatomic locations. J Histochem Cytochem. 1992;40(6):819–25.

    Article  PubMed  CAS  Google Scholar 

  92. Berchtold MW, Brinkmeier H, Muntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev. 2000;80(3):1215–65.

    Article  PubMed  CAS  Google Scholar 

  93. Lieber RL. Skeletal muscle structure, function, and plasticity. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  94. Kelly JH, Kuncl RW. Myology of the pharyngoesophageal segment: gross anatomic and histologic characteristics. Laryngoscope. 1996;106(6):713–20.

    Article  PubMed  CAS  Google Scholar 

  95. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development. 2012;139(16):2845–56.

    Article  PubMed  CAS  Google Scholar 

  96. McLoon LK, Rowe J, Wirtschafter J, McCormick KM. Continuous myofiber remodeling in uninjured extraocular myofibers: myonuclear turnover and evidence for apoptosis. Muscle Nerve. 2004;29(5):707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Randolph ME, Phillips BL, Choo HJ, Vest KE, Vera Y, Pavlath GK. Pharyngeal satellite cells undergo myogenesis under basal conditions and are required for pharyngeal muscle maintenance. Stem Cells. 2015;33(12):3581–95.

    Article  PubMed  Google Scholar 

  98. Brack AS, Rando TA. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 2007;3(3):226–37.

    Article  PubMed  CAS  Google Scholar 

  99. Hikida RS, van Nostran S, Murray JD, Staron RS, Gordon SE, Kraemer WJ. Myonuclear loss in atrophied soleus muscle fibers. Anat Rec. 1997;247(3):350–4.

    Article  PubMed  CAS  Google Scholar 

  100. Mittelbronn M, Sullivan T, Stewart CL, Bornemann A. Myonuclear degeneration in LMNA null mice. Brain Pathol. 2008;18(3):338–43.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Benninger MS, Gardner GM, Schwimmer C, Divi V. Neuroanatomy of the larynx. Diagnosis and treatment of voice disorders. San Diego: Plural Publishing; 2006.

    Google Scholar 

  102. Shindo ML, Herzon GD, Hanson DG, Cain DJ, Sahgal V. Effects of denervation on laryngeal muscles: a canine model. Laryngoscope. 1992;102(6):663–9.

    Article  PubMed  CAS  Google Scholar 

  103. Nomoto M, Yoshihara T, Kanda T, Konno A, Kaneko T. Misdirected reinnervation in the feline intrinsic laryngeal muscles after long-term denervation. Acta Otolaryngol Suppl. 1993;506:71–4.

    Article  PubMed  CAS  Google Scholar 

  104. Kano S, Horowitz JB, Sasaki CT. Posterior cricoarytenoid muscle denervation. Arch Otolaryngol Head Neck Surgery. 1991;117(9):1019–20.

    Article  CAS  Google Scholar 

  105. Andrade FH, Porter JD, Kaminski HJ. Eye muscle sparing by the muscular dystrophies: lessons to be learned? Microsc Res Tech. 2000;48(3–4):192–203.

    Article  PubMed  CAS  Google Scholar 

  106. Aydogdu I, Kiylioglu N, Tarlaci S, Tanriverdi Z, Alpaydin S, Acarer A, et al. Diagnostic value of “dysphagia limit” for neurogenic dysphagia: 17 years of experience in 1278 adults. Clin Neurophysiol. 2015;126(3):634–43.

    Article  PubMed  Google Scholar 

  107. Mu L, Sobotka S, Chen J, Su H, Sanders I, Adler CH, et al. Altered pharyngeal muscles in Parkinson disease. J Neuropath Exp Neurol. 2012;71(6):520–30.

    Article  PubMed  Google Scholar 

  108. Olszewski J. Causes, diagnosis and treatment of neurogenic dysphagia as an interdisciplinary clinical problem. Otolaryngol Pol. 2006;60(4):491–500.

    PubMed  Google Scholar 

  109. Wirtz PW, Sotodeh M, Nijnuis M, Van Doorn PA, Van Engelen BGM, et al. Difference in distribution of muscle weakness between myasthenia gravis and the Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatr. 2002;73(6):766–8.

    Article  CAS  Google Scholar 

  110. Higo R, Nito T, Tayama N. Videofluoroscopic assessment of swallowing function in patients with myasthenia gravis. J Neurol Sci. 2005;231(1–2):45–8.

    Article  PubMed  Google Scholar 

  111. Jaradeh S. Muscle disorders affecting oral and pharyngeal swallowing. GI Motility. 2006. https://doi.org/10.1038/gimo35.

    Article  Google Scholar 

  112. Gidaro T, Negroni E, Perié S, Mirabella M, Lainé J, St Guily JL, et al. Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients. J Neuropathol Exp Neurol. 2013;72(3):234–43.

    Article  PubMed  CAS  Google Scholar 

  113. Périé S, Mamchaoui K, Mouly V, Blot S, Bouazza B, Thornell LE, et al. Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: therapeutic perspectives of autologous myoblast transplantation. Neuromuscul Disord. 2006;16(11):770–81.

    Article  PubMed  Google Scholar 

  114. Dyck PJ, Chance PF, Lebo R, Carney JA (1993) Hereditary motor and sensory neuropathies. Peripheral Neuropathy. 1094–1140

  115. Mu L, Sobotka S, Chen J, Su H, Sanders I, Nyirenda T, et al. Parkinson disease affects peripheral sensory nerves in the pharynx. J Neuropathol Exp Neurol. 2013;72(7):614–23.

    Article  PubMed  Google Scholar 

  116. Schulze SL, Danielson SK, Rhee JS, Toohill RJ, Kulpa JI, Jaradeh SS. Morphology of the cricopharyngeal muscle in Zenker and control specimens. Ann Otol Rhinol Laryngol. 2002;111(7 Pt 1):573–8.

    Article  PubMed  Google Scholar 

  117. Kawashima K, Motohashi Y, Fujishima I. Prevalence of dysphagia among community-dwelling elderly individuals as estimated using a questionnaire for dysphagia screening. Dysphagia. 2004;19(4):266–71.

    Article  PubMed  Google Scholar 

  118. Roubenoff R, Hughes VA. Sarcopenia: current concepts. J Gerontol A. 2000;55(12):M716–24.

    Article  CAS  Google Scholar 

  119. Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231–43.

    Article  PubMed  CAS  Google Scholar 

  120. Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  121. Purves-Smith FM, Solbak NM, Rowan SL, Hepple RT. Severe atrophy of slow myofibers in aging muscle is concealed by myosin heavy chain co-expression. Exp Gerontol. 2012;47(12):913–8.

    Article  PubMed  CAS  Google Scholar 

  122. Lexell J, Henriksson-Larsen K, Winblad B, Sjostrom M. Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle Nerve. 1983;6(8):588–95.

    Article  PubMed  CAS  Google Scholar 

  123. Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2–3):275–94.

    Article  PubMed  CAS  Google Scholar 

  124. Deschenes MR. Effects of aging on muscle fibre type and size. Sports Med. 2004;34(12):809–24.

    Article  PubMed  Google Scholar 

  125. Lexell J, Downham DY. The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol. 1991;81(4):377–81.

    Article  PubMed  CAS  Google Scholar 

  126. Larsson L. Motor units: remodeling in aged animals. J Gerontol A. 1995;50:91–5.

    Google Scholar 

  127. Winegard KJ, Hicks AL, Sale DG, Vandervoort AA. A 12-year follow-up study of ankle muscle function in older adults. J Gerontol A. 1996;51(3):B202–7.

    Article  CAS  Google Scholar 

  128. Bellew JW. Nonpathological changes in the neuromuscular system as a function of aging. Issues Aging. 1998;21(4):1998.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health Grant 5R01 DC014679 from the National Institute on Deafness and Other Communication Disorders (to Dr. Liancai Mu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Elrabie Ahmed Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s00455-022-10534-1"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.E.A., Mu, L. & Abdelfattah, H.M. RETRACTED ARTICLE: Neuromuscular Specializations of the Human Hypopharyngeal Muscles. Dysphagia 36, 769–785 (2021). https://doi.org/10.1007/s00455-020-10212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-020-10212-0

Keywords

Navigation