Skip to main content

Advertisement

Log in

Dysphagia in Lateral Medullary Syndrome: A Narrative Review

  • Review
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Dysphagia is a common clinical feature of lateral medullary syndrome (LMS) and is clinically relevant because it is related to aspiration pneumonia, malnutrition, increased mortality, and prolonged hospital stay. Herein, the pathophysiology, prognosis, and treatment of dysphagia in LMS are reviewed. The pathophysiology, prognosis, and treatment of dysphagia in LMS are closely interconnected. Although the pathophysiology of dysphagia in LMS has not been fully elucidated, previous studies have suggested that the medullary central pattern generators coordinate the pharyngeal phases of swallowing. Investigation of the extensive neural connections of the medulla oblongata is important in understanding the pathophysiologic mechanism of dysphagia in LMS. Previous studies have reported that most patients with dysphagia in LMS have a relatively good prognosis. However, some patients require tube feeding for several months, even years, due to severe dysphagia, and little has been reported about conditions associated with a poor prognosis of dysphagia in LMS. Concerning specific therapeutic modalities for dysphagia in LMS, in addition to general modalities used for dysphagia treatment in stroke patients, non-invasive modalities, including repetitive transcranial magnetic stimulation and transcranial direct current stimulation, as well as invasive modalities, such as botulinum toxin injection, balloon catheter dilatation, and myotomy for relaxation of the cricopharyngeal muscle, have been applied. For the appropriate application of therapeutic modalities, clinicians should be aware of the recovery mechanisms and prognosis of dysphagia in LMS. Further studies on this topic, as well as studies involving large numbers of subjects on specific therapeutic modalities, should be encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LMS:

Lateral medullary syndrome

NA:

Nucleus ambiguus

NTS:

Nucleus tractus solitarius

rTMS:

Repetitive transcranial magnetic stimulation

tDCS:

Transcranial direct current stimulation

CP:

Cricopharyngeal

UES:

Upper esophageal sphincter

MRI:

Magnetic resonance imaging

BTX-A:

Botulinum toxin type A

DOSS:

Dysphagia Outcome and Severity Scale

References

  1. Sacco RL, Freddo L, Bello JA, Odel JG, Onesti ST, Mohr JP. Wallenberg’s lateral medullary syndrome. Arch Neurol. 1993;50:609–14.

    CAS  PubMed  Google Scholar 

  2. Kim JS. Pure lateral medullary infarction: clinical–radiological correlation of 130 acute, consecutive patients. Brain. 2003;126(Pt 8):1864–72.

    PubMed  Google Scholar 

  3. Cidad P, Boto A, Del Hierro A, Capote M, Noval S, Garcia A, et al. Unilateral punctate keratitis secondary to Wallenberg Syndrome. Korean J Ophthalmol. 2014;28(3):278–83.

    PubMed  PubMed Central  Google Scholar 

  4. Fatima S, Joe MD. Lateral medullary syndrome. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019.

  5. Norrving B, Cronqvist S. Lateral medullary infarction: prognosis in an unselected series. Neurology. 1991;41:244–8.

    CAS  PubMed  Google Scholar 

  6. Jang SH, Kwak SY, Chang CH, Jung YJ, Kim J, Kim SH, et al. Prognostic prediction of dysphagia by analyzing the corticobulbar tract in the early stage of intracerebral hemorrhage. Dysphagia. 2020. https://doi.org/10.1007/s00455-020-10093-3.

    Article  PubMed  Google Scholar 

  7. Guyomard V, Fulcher RA, Redmayne O, Metcalf AK, Potter JF, Myint PK. Effect of dysphasia and dysphagia on inpatient mortality and hospital length of stay: a database study. J Am Geriatr Soc. 2009;57:2101–6.

    PubMed  Google Scholar 

  8. Wilson RD. Mortality and cost of pneumonia after stroke for different risk groups. J Stroke Cerebrovasc Dis. 2012;10:61–7.

    Google Scholar 

  9. Lin WC, Huang CY, Lee LF, Chen YW, Ho CH, Sun YT. Initial National Institute of Health Stroke Scale to early predict the improvement of swallowing in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. 2019. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.07.013.

    Article  PubMed  Google Scholar 

  10. Schmidt J, Holas M, Halvorson K, Reding M. Videofluoroscopic evidence of aspiration predicts pneumonia and death but not dehydration following stroke. Dysphagia. 1994;9:7–11.

    CAS  PubMed  Google Scholar 

  11. Kalra L, Smith DH, Crome P. Stroke in patients aged over 75 years: outcome and predictors. Postgrad Med J. 1993;69:33–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vigderman AM, Chavin JM, Kososky C, Tahmoush AJ. Aphagia due to pharyngeal constrictor paresis from acute lateral medullary infarction. J Neurol Sci. 1998;155(2):208–10.

    CAS  PubMed  Google Scholar 

  13. Aydogdu I, Ertekin C, Tarlaci S, Turman B, Kiylioglu N, Secil Y. Dysphagia in lateral medullary infarction (Wallenberg's syndrome): an acute disconnection syndrome in premotor neurons related to swallowing activity? Stroke. 2001;32(9):2081–7.

    CAS  PubMed  Google Scholar 

  14. Martino R, Terrault N, Ezerzer F, Mikulis D, Diamant NE. Dysphagia in a patient with lateral medullary syndrome: insight into the central control of swallowing. Gastroenterology. 2001;121(2):420–6.

    CAS  PubMed  Google Scholar 

  15. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81(2):929–69.

    CAS  PubMed  Google Scholar 

  16. Crary MA. A direct intervention program for chronic neurogenic dysphagia secondary to brainstem stroke. Dysphagia. 1995;10(1):6–18.

    CAS  PubMed  Google Scholar 

  17. Meng NH, Wang TG, Lien IN. Dysphagia in patients with brainstem stroke: incidence and outcome. Am J Phys Med Rehabil. 2000;79(2):170–5.

    CAS  PubMed  Google Scholar 

  18. Chun MH, Kim D, Chang MC. Comparison of dysphagia outcomes between rostral and caudal lateral medullary infarct patients. Int J Neurosci. 2017;127(11):965–70.

    PubMed  Google Scholar 

  19. Kim HJ, Lee HJ, Park JW. Clinical course and outcome in patients with severe dysphagia after lateral medullary syndrome. Ther Adv Neurol Disord. 2018;11:1–6.

    Google Scholar 

  20. Kim H, Chung CS, Lee KH, Robbins J. Aspiration subsequent to a pure medullary infarction: lesion sites, clinical variables, and outcome. Arch Neurol. 2000;57(4):478–83.

    CAS  PubMed  Google Scholar 

  21. Gupta H, Banerjee A. Recovery of dysphagia in lateral medullary stroke. Case Rep Neurol Med. 2014;2014:404871.

    PubMed  PubMed Central  Google Scholar 

  22. Hillel MF, Robert WT, John H. case study of dysphagia and aspiration following a brain stem stroke. Top Stroke Rehabil. 1999;6(3):41–5.

    Google Scholar 

  23. Anne MV, Jeffrey MC, Charles K, Albert JT. Aphagia due to pharyngeal constrictor paresis from acute lateral medullary infarction. J Neurol Sci. 1998;155(2):208–10.

    Google Scholar 

  24. Logemann JA, Kahrilas PJ. Relearning to swallow after stroke—application of maneuvers and indirect biofeedback: a case study. Neurology. 1990;40(7):1136–8.

    CAS  PubMed  Google Scholar 

  25. Sruthi SN, Arathy JS, Jayakumar RM, Sapna ES, Padmavathy NS. Persistent post-stroke dysphagia treated with cricopharyngeal myotomy. Ann Indian Acad Neurol. 2016;19(2):249–51.

    Google Scholar 

  26. Verin E, Leroi AM, Marie JP. Restoration of normal swallowing function in wallenberg syndrome by repetitive transcranial magnetic stimulation and surgery. Ann Phys Rehabil Med. 2016;59(5–6):343–5.

    PubMed  Google Scholar 

  27. Khedr EM, Abo-Elfetoh N. Therapeutic role of rTMS on recovery of dysphagia in patients with lateral medullary syndrome and brainstem infarction. J Neurol Neurosurg Psychiatry. 2010;81(5):495–9.

    PubMed  Google Scholar 

  28. Rhee WI, Won SJ, Ko SB. Diagnosis with manometry and treatment with repetitive transcranial magnetic stimulation in dysphagia. Ann Rehabil Med. 2013;37(6):907–12.

    PubMed  PubMed Central  Google Scholar 

  29. Katoh J, Hayakawa M, Ishihara K, Kazumi T. Swallowing rehabilitation using balloon catheter treatment evaluated by videofluorography in an elderly patient with Wallenberg's syndrome. Nihon Ronen Igakkai Zasshi. 2000;37(6):490–4.

    CAS  PubMed  Google Scholar 

  30. Miyamoto J, Niijima K, Kubo Y, Miyazaki H, Iguchi F. Successful treatment of dysphagia due to Wallenberg syndrome using intermittent air stretching method with balloon catheter: a case report. No Shinkei Geka. 2014;42(3):227–31.

    PubMed  Google Scholar 

  31. Ogata T, Tsuboi Y, Kimura S. Successful early swallowing rehabilitation in a patient with Wallenberg syndrome. J Neurol Sci. 2017;381:869.

    Google Scholar 

  32. Osamu K, Hideto S, Hiroaki N, Ayumi O, Yasuyo M, Rei S, et al. Three cases that presented with prolonged dysphagia, after medulla oblongata infarction that was caused by mechanical damage of the cricopharyngeal muscle during balloon dilatation therapy of the-pharyngo-esophageal segment. Nippon Jibiinkoka Gakkai Kaiho. 2019;122:1140–9.

    Google Scholar 

  33. Schneider I, Potatschnig C, Thomfort WF, Eckel HE. Treatment of dysfunction of the CPM with botulinum A toxin: introduction of a new, noninvasive method. Ann Otol Rhinol Laryngol. 1994;103:31–5.

    CAS  PubMed  Google Scholar 

  34. Kim DY, Park CI, Ohn SH, Moon JY, Chang WH, Park SW. Botulinum toxin type A for poststroke cricopharyngeal muscle dysfunction. Arch Phys Med Rehabil. 2006;87(10):1346–51.

    PubMed  Google Scholar 

  35. Lee SY, Seo HG, Paik NJ. Botulinum toxin injection for dysphagia: a blinded retrospective videofluoroscopic swallowing study analysis. Am J Phys Med Rehabil. 2009;88:491–4.

    PubMed  Google Scholar 

  36. Alfonsi E, Restivo DA, Cosentino G, De Icco R, Bertino G, Schindler A, et al. Botulinum toxin is effective in the management of neurogenic dysphagia. Clinical–electrophysiological findings and tips on safety in different neurological disorders. Front Pharmacol. 2017;8:80.

    PubMed  PubMed Central  Google Scholar 

  37. Battel I, Koch I, Biddau F, Carollo C, Piccione F, Meneghello F, et al. Efficacy of botulinum toxin type-A and swallowing treatment for oropharyngeal dysphagia recovery in a patient with lateral medullary syndrome. Eur J Phys Rehabil Med. 2017;53(5):798–801.

    PubMed  Google Scholar 

  38. Koichiro M, Jeffrey BP. Anatomy and physiology of feeding and swallowing—normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691–707.

    Google Scholar 

  39. Miller AJ. Neurophysiological basis of swallowing. Dysphagia. 1986;1:91.

    Google Scholar 

  40. Dulak D, Naqvi IA. Neuroanatomy, Cranial Nerve 7 (Facial). StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018.

  41. Elliott B, Forshing L. Neuroanatomy, Vagal Nerve Nuclei (Nucleus Vagus). StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019.

  42. Ghannam JY, Al Kharazi KA. Neuroanatomy, Cranial Meninges. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019.

  43. Sonne J, Lopez-Ojeda W. Neuroanatomy, Cranial Nerve. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing: 2019.

  44. Bogdana P, Prasanna T. Neuroanatomy, Nucleus Ambiguus. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019.

  45. Shigeyuki M, Yoichiro S, Yasuo H. Dorsal motor nucleus of the vagus. Neuroanatomy and Neurophysiology of the Larynx, pp. 97–102; 2016.

  46. Kim SY, Imama AN. Neuroanatomy, Cranial Nerve 12 (Hypoglossal). StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018.

  47. Duane EH. Neuroanatomy: an atlas of structures, sections, and systems. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  48. Nilsson H, Ekberg O, Sjoberg S, Olsson R. Pharyngeal constrictor paresis: an indicator of neurologic disease? Dysphagia. 1999;8:239–43.

    Google Scholar 

  49. Cook IJ. Criopharyngeal function and dysfunction. Dysphagia. 1999;8:244–51.

    Google Scholar 

  50. Kwon M, Lee JH, Kim JS. Dysphagia in unilateral medullary infarction: lateral vs medial lesions. Neurology. 2005;65(5):714–8.

    PubMed  Google Scholar 

  51. Li X, Wang Y. Lateral medullary infarction with ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy. Neurol Sci. 2014;35(4):633–4.

    CAS  PubMed  Google Scholar 

  52. Cunningham ET, Sawchenko PE. Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J Comp Neurol. 2000;417(4):448–66.

    PubMed  Google Scholar 

  53. Boughter JD Jr, Mulligan MK, St John SJ, Tokita K, Lu L, Heck DH, et al. Genetic control of a central pattern generator: rhythmic oromotor movement in mice is controlled by a major locus near Atp1a2. PLoS ONE. 2012;7(5):e38169.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gomes CA Jr, Lustosa SA, Matos D, Andriolo RB, Waisberg DR, Waisberg J. Percutaneous endoscopic gastrostomy versus nasogastric tube feeding for adults with swallowing disturbances. Cochrane Database Syst Rev. 2010;11:CD008096.

    Google Scholar 

  55. Logemann JA, Kahrilas PJ, Kobara M, Vakil NB. The benefit of head rotation on pharyngoesophageal dysphagia. Arch Phys Med Rehabil. 1989;70(10):767–71.

    CAS  PubMed  Google Scholar 

  56. Tsukamoto Y. CT study of closure of the hemipharynx with head rotation in a case of lateral medullary syndrome. Dysphagia. 2000;15(1):17–8.

    CAS  PubMed  Google Scholar 

  57. Ding R, Larson CR, Logemann JA, Rademaker AW. Surface electromyographic and electroglottographic studies in normal subjects under two swallow conditions: normal and during the Mendelsohn maneuver. Dysphagia. 2002;17:1–12.

    PubMed  Google Scholar 

  58. Boden K, Hallgren A, Witt HH. Effects of three different swallow maneuvers analyzed by videomanometry. Acta Radiogica. 2006;47:628–33.

    CAS  Google Scholar 

  59. Shaker R, Easterling C, Kern M, Nitschke T, Massey B, Daniels S, et al. Rehabilitation of swallowing by exercise in tube-fed patients with pharyngeal dysphagia secondary to abnormal UES opening. Gastroenterology. 2002;122(5):1314–21.

    PubMed  Google Scholar 

  60. Kunieda K, Kubo S, Fujishima I. New swallowing method to improve pharyngeal passage of a bolus by creating negative pressure in the esophagus-vacuum swallowing. Am J Phys Med Rehabil. 2018;97(9):e81–e8484.

    PubMed  PubMed Central  Google Scholar 

  61. Reimers-Neils L, Logemann J, Larson C. Viscosity effects on EMG activity in normal swallow. Dysphagia. 1994;9:101–6.

    CAS  PubMed  Google Scholar 

  62. Lazarus CL, Logemann JA, Rademaker AW, Kahrilas PJ, Pajak T, Lazar R, et al. Effects of bolus volume, viscosity and repeated swallows in nonstroke subjects and stroke patients. Arch Phys Med Rehabil. 1993;74:1066–70.

    CAS  PubMed  Google Scholar 

  63. Shanahan TK, Logemann JA, Rademaker AW, Pauloski BR, Kahrilas PJ. Chin-down posture effect on aspiration in dysphagic patients. Arch Phys Med Rehabil. 1993;74:736–9.

    CAS  PubMed  Google Scholar 

  64. Bulow M, Olsson R, Ekberg O. Videomanometric analysis of supraglottic swallow, effortful swallow, and chin tuck in patients with pharyngeal dysfunction. Dysphagia. 2001;16:190–5.

    CAS  PubMed  Google Scholar 

  65. Steele CM. Exercise-based approaches to dysphagia rehabilitation. Nestle Nutr Inst Workshop Ser. 2012;72:109–17.

    PubMed  Google Scholar 

  66. Ludlow CL, Humbert I, Saxon K, Poletto C, Sonies B, Crujido L. Effects of surface electrical stimulation both at rest and during swallowing in chronic pharyngeal Dysphagia. Dysphagia. 2007;22:1–10.

    PubMed  PubMed Central  Google Scholar 

  67. Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of poststroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand. 2009;119:155–61.

    CAS  PubMed  Google Scholar 

  68. Kim L, Chun MH, Kim BR, Lee SJ. Effect of repetitive transcranial magnetic stimulation on patients with brain injury anddysphagia. Ann Rehabil Med. 2011;35:765–71.

    PubMed  PubMed Central  Google Scholar 

  69. Park JW, Oh JC, Lee JW, Yeo JS, Ryu KH. The effect of 5Hz high-frequency rTMS over contralesional pharyngealmotor cortex in post-stroke oropharyngeal dysphagia: a randomized controlled study. Neurogastroenterol Motil. 2013;25:324–e250.

    PubMed  Google Scholar 

  70. Lim KB, Lee HJ, Yoo J, Kwon YG. Effect of low-frequency rTMS and NMES on subacute unilateral hemispheric stroke with dysphagia. Ann Rehabil Med. 2014;38:592–602.

    PubMed  PubMed Central  Google Scholar 

  71. Kumar S, Wagner CW, Frayne C, Zhu L, Selim M, Feng W, et al. Noninvasive brain stimulation may improve stroke-related dysphagia: a pilot study. Stroke. 2011;42:1035–40.

    PubMed  PubMed Central  Google Scholar 

  72. Yang EJ, Baek SR, Shin J, Lim JY, Jang HJ, Kim YK, et al. Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia. Restor Neurol Neurosci. 2012;30:303–11.

    CAS  PubMed  Google Scholar 

  73. Oshima F, Yokozeki M, Hamanaka M, Imai K, Makino M, Kimura M, et al. Prediction of dysphagia severity: an investigation of the dysphagia patterns in patients with lateral medullary infarction. Intern Med. 2013;52(12):1325–31.

    PubMed  Google Scholar 

  74. Shigematsu T, Fujishima I, Ohno K. Transcranial direct current stimulation improves swallowing function in stroke patients. Neurorehabil Neural Repair. 2013;27(4):363–9.

    PubMed  Google Scholar 

  75. Gow D, Rothwell J, Hobson A, Thompson D, Hamdy S. Induction of long-term plasticity in human swallowing motor cortex following repetitive cortical stimulation. Clin Neurophysiol. 1044e;115:1044e51.

    Google Scholar 

  76. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci. 1950e;19:1950e62.

    Google Scholar 

  77. Baudewig J, Siebner HR, Bestmann S, Tergau F, Tings T, Paulus W, et al. Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS). NeuroReport. 2001;12:3543.

    CAS  PubMed  Google Scholar 

  78. Fonteneau C, Redoute J, Haesebaert F, Le Bars D, Costes N, Suaud-Chagny MF, et al. Frontal transcranial direct current stimulation induces dopamine release in the ventral striatum in human. Cereb Cortex. 2018;28(7):2636–46.

    PubMed  PubMed Central  Google Scholar 

  79. Kocdor P, Siegel ER, Tulunay-Ugur OE. Cricopharyngeal dysfunction: a systematic review comparing outcomes of dilatation, botulinum toxin injection, and myotomy. Laryngoscope. 2016;126(1):135–41.

    CAS  PubMed  Google Scholar 

  80. Blitzer A, Brin MF. Use of botulinum toxin for diagnosis and management of cricopharyngeal achalasia. Otolaryngol Head Neck Surg. 1997;116:328–30.

    CAS  PubMed  Google Scholar 

  81. Alberty J, Oelerich M, Ludwig K, Hartmann S, Stoll W. Efficacy of botulinum toxin A for treatment of upper esophageal sphincter dysfunction. Laryngoscope. 2000;110:1151–6.

    CAS  PubMed  Google Scholar 

  82. Haapaniemi JJ, Laurikainen EA, Pulkkinen J, Marttila RJ. Botulinum toxin in the treatment of cricopharyngeal dysphagia. Dysphagia. 2001;16:171–5.

    CAS  PubMed  Google Scholar 

  83. Shaw GY, Searl JP. Botulinum toxin treatment for cricopharyngeal dysfunction. Dysphagia. 2001;16:161–7.

    CAS  PubMed  Google Scholar 

  84. Parameswaran MS, Soliman AMS. Endoscopic botulinum toxin injection for cricopharyngeal dysphagia. Ann Otol Rhinol Laryngol. 2002;111:871–4.

    PubMed  Google Scholar 

  85. Zaninotto G, Ragona RM, Briani C, Costantini M, Rizzetto C, Portale G, et al. The role of botulinum toxin injection and upper esophageal sphincter myotomy in treating oropharyngeal dysphagia. J Gastrointest Surg. 2004;8:997–1006.

    PubMed  Google Scholar 

  86. Murry T, Wasserman T, Carrau RL, Castillo B. Injection of botulinum toxin A for the treatment of dysfunction of the upper esophageal sphincter. Am J Otolaryngol. 2005;26:157–62.

    CAS  PubMed  Google Scholar 

  87. Terre R, Valles M, Panades A, Mearin F. Long-lasting effect of a single botulinum toxin injection in the treatment of oropharyngeal dysphagia secondary to upper esophageal sphincter dysfunction: a pilot study. Scand J Gastroenterol. 2008;43:1296–303.

    CAS  PubMed  Google Scholar 

  88. Alfonsi E, Merlo IM, Ponzio M, Montomoli C, Tassorelli C, Biancardi C, et al. An electrophysiological approach to the diagnosis of neurogenic dysphagia: implications for botulinum toxin treatment. J Neurol Neurosurg Psychiatry. 2010;81:54–60.

    CAS  PubMed  Google Scholar 

  89. Woisard-Bassols V, Alshehri S, Simonetta-Moreau M. The effects of botulinum toxin injections into the cricopharyngeus muscle of patients with cricopharyngeus dysfunction associated with pharyngo-laryngeal weakness. Eur Arch Otorhinolaryngol. 2013;270:805–15.

    PubMed  Google Scholar 

  90. StGuily JL, Perie S, Willig TN, Chaussade S, Eymard B, Angelard B. Swallowing disorders in muscular diseases: functional assessment and indications of cricopharyngeal myotomy. Ear Nose Throat J. 1994;73:34–40.

    CAS  Google Scholar 

  91. Herberhold C, Walther EK. Endoscopic laser myotomy in cricopharyngeal achalasia. Adv Otorhinolaryngol. 1995;49:144–7.

    CAS  PubMed  Google Scholar 

  92. Poirier NC, Bonavina L, Taillefer R, Nosadini A, Peracchia A, Duranceau A. Cricopharyngeal myotomy for neurogenic oropharyngeal dysphagia. J Thorac Cardiovasc Surg. 1997;113:233–40.

    CAS  PubMed  Google Scholar 

  93. Ali GN, Wallace KL, Laundl TM, Hunt DR, deCarle DJ, Cook IJ. Predictors of outcome following cricopharyngeal disruption for pharyngeal dysphagia. Dysphagia. 1997;12:133–9.

    CAS  PubMed  Google Scholar 

  94. Halvorson DJ. The treatment of cricopharyngeal dysmotility with a transmucosal cricopharyngeal myotomy using the potassium-titanly-phosphate (KTP) laser. Endoscopy. 1998;30:46–50.

    CAS  PubMed  Google Scholar 

  95. Mason RJ, Bremner CG, DeMeester TR. Pharyngeal swallowing disorders selection for and outcome after myotomy. Ann Surg. 1998;228:598–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lawson G, Remacle M, Jamart J, Keghian J. Endoscopic CO2 laser-assisted surgery for cricopharyngeal dysfunction. Eur Arch Otorhinolaryngol. 2003;260:475–80.

    PubMed  Google Scholar 

  97. Takes RP, Hoogen FJA, Marres HAM. Endoscopic myotomy of the cricopharyngeal muscle with CO2 laser surgery. Head Neck. 2005;27:703–9.

    PubMed  Google Scholar 

  98. Dauer E, Salassa J, Luga L, Kasperbauer J. Endoscopic laser vs open approach for cricopharyngeal myotomy. Otolaryngol Head Neck Surg. 2006;134:830–5.

    PubMed  Google Scholar 

  99. Munoz AA, Shapiro J, Cuddy LD, Misono S, Bhattacharyya N. Videofluoroscopic findings in dysphagic patients with cricopharyngeal dysfunction: before and after open cricopharyngeal myotomy. Ann Otol Rhinol Laryngol. 2007;116:49–56.

    PubMed  Google Scholar 

  100. Lawson G, Remacle M. Ins and outs of myotomy of the upper esophageal sphincter in swallowing disorders. B-ENT. 2008;10:83–9.

    Google Scholar 

  101. Kos MP, David EF, Klinkenberg-Knol EC, Mahieu HF. Long-term results of external upper esophageal sphincter myotomy for oropharyngeal dysphagia. Dysphagia. 2010;25:169–76.

    PubMed  Google Scholar 

  102. Ozgursoy OB, Salassa JR. Manofluorographic and functional outcomes after endoscopic laser cricopharyngeal myotomy for cricopharyngeal bar. Otolaryngol Head Neck Surg. 2010;142:735–40.

    PubMed  Google Scholar 

  103. Bachy V, Matar N, Remacle M, Jamart J, Lawson G. Long-term functional results after endoscopic cricopharyngeal myotomy with CO2 laser: a retrospective study of 32 cases. Eur Arch Otorhinolaryngol. 2013;270:965–8.

    PubMed  Google Scholar 

  104. Lim RY. Endoscopic CO2 laser cricopharyngeal myotomy. J Clin Laser Med Surg. 1995;13:241–7.

    CAS  PubMed  Google Scholar 

  105. Solt J, Bajor J, Moizs M, Grexa E, Horváth PO. Primary cricopharyngeal dysfunction: treatment with balloon catheter dilatation. Gastrointest Endosc. 2001;6:767–71.

    Google Scholar 

  106. Wang AY, Kadkade R, Kahrilas PJ, Hirano I. Effectiveness of esophageal dilation for symptomatic cricopharyngeal bar. Gastrointest Endosc. 2005;61:148–52.

    PubMed  Google Scholar 

  107. Dou Z, Zu Y, Wen H, Wan G, Jiang L, Hu Y. The effect of different catheter balloon dilatations modes on cricopharyngeal dysfunction in patients with dysphagia. Dysphagia. 2012;27:514–20.

    PubMed  Google Scholar 

  108. Campbell BH, Tuominen TC, Toohill RJ. The risk and complications of aspiration following cricopharyngeal myotomy. Am J Med. 1997;103:61S–3S.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (No. 2018R1A2B6000996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Son Kim.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, S.H., Kim, M.S. Dysphagia in Lateral Medullary Syndrome: A Narrative Review. Dysphagia 36, 329–338 (2021). https://doi.org/10.1007/s00455-020-10158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-020-10158-3

Keywords

Navigation