Skip to main content
Log in

The Role of the Corpus Callosum in Pediatric Dysphagia: Preliminary Findings from a Diffusion Tensor Imaging Study in Children with Unilateral Spastic Cerebral Palsy

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

The purpose of this study is to determine the relationship between the structural integrity of the corpus callosum (CC) and clinical feeding/swallowing performance in children with unilateral spastic cerebral palsy (USCP). Twenty children with USCP, (11 males, 5.11–17.6 yoa) were assessed via the Dysphagia Disorder Survey (DDS) and diffusion tensor imaging. Children were grouped into left hemisphere lesion (LHL; n = 13) and right hemisphere lesion (RHL; n = 7) groups. DTI variables analyzed for three CC regions (anterior, middle, posterior) were: fractional anisotropy (FA), radial diffusivity (RD), mean diffusivity (MD), and fibers count. Children with RHL presented with higher clinical dysphagia severity (p = 0.03). Six of seven children with RHL had lesions affecting periventricular/subcortical areas, and 8/13 children with LHL had lesions affecting the sensorimotor cortex. In the LHL group, as FA and fiber count of the anterior CC decreased and RD increased (all indicating reduced CC structural integrity), signs of dysphagia increased (r = −0.667, p = 0.013; r = −0.829, p ≤ 0.001; r = 0.594, p = 0.032, respectively). Reduced fiber count in the middle and posterior CC was also significantly associated with increased DDS scores (r = −0.762, p = 0.002; r = −0.739, p = 0.004, respectively). For the RHL group no significant correlations were observed. We provide preliminary evidence that corpus callosum integrity correlates with feeding/swallowing performance in children with USCP, especially when cortical sensorimotor areas of the left hemisphere are impacted. In this sample, CC integrity appeared to enable interhemispheric cortical plasticity for swallowing, but was not as critical when intrahemispheric connections were disrupted, as seen in the RHL group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dziewas R, Sörös P, Ishii R, Chau W, Henningsen H, Ringelstein EB, Knecht S, Pantev C. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage. 2003;20(1):135–44.

    Article  CAS  PubMed  Google Scholar 

  2. Humbert IA, Joel S. Tactile, gustatory, and visual biofeedback stimuli modulate neural substrates of deglutition. Neuroimage. 2012;59(2):1485–90.

    Article  PubMed  Google Scholar 

  3. Humbert IA, Robbins J. Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia. 2007;22(3):266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lowell SY, Reynolds RC, Chen G, Horwitz B, Ludlow CL. Functional connectivity and network. Exp Brain Res. 2012;219(1):85–96.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kern M, Birn R, Jaradeh S, Jesmanowicz A, Cox R, Hyde J, Shaker R. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol. 2001;280(4):G531–8.

    CAS  Google Scholar 

  6. Malandraki G, Sutton B, Perlman AL, Karampinos DC, Conway C. Neural activation of swallowing and swallowing-related tasks in healthy young adults: an attempt to separate the components of deglutition. Hum Brain Mapp. 2009;30:3209–26.

    Article  PubMed  Google Scholar 

  7. Malandraki G, Perlman AL, Karampinos DC, Sutton B. Reduced somatosensory activations in swallowing with age. Hum Brain Mapp. 2011;32:730–43.

    Article  PubMed  Google Scholar 

  8. Malandraki GA, Johnson S, Robbins J. Functional MRI of swallowing: from neurophysiology to neuroplasticity. Head Neck. 2011;33:S14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, Menon RS. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol. 2004;92(4):2428–93.

    Article  PubMed  Google Scholar 

  10. Martin R, Barr A, Macintosh B, Smith R, Stevens T, Taves D, Gati J, Menon R, Hachinski V. Cerebral cortical processing of swallowing in older adults. Exp Brain Res. 2007;176:12–22.

    Article  PubMed  Google Scholar 

  11. Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140(3):280–9.

    Article  CAS  PubMed  Google Scholar 

  12. Shibamoto I, Tanaka T, Fujishima I, Katagiri N, Uematsu H. Cortical activation during solid bolus swallowing. J Med Dent Sci. 2007;54(1):25.

    PubMed  Google Scholar 

  13. Hamdy S, Rothwell JC, Aziz Q, Thompson DG. Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke. Clin Sci. 2000;99(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hamdy S, Aziz Q, Rothwell JC, Singh KD, Barlow J, Hughes DG, Tallis RC, Thompson DG. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996;2(11):1217–24.

    Article  CAS  PubMed  Google Scholar 

  15. Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Age-related differences in laterality of cortical activations in swallowing. Dysphagia. 2010;25(3):238–49.

    Article  PubMed  Google Scholar 

  16. Daniels SK, Corey DM, Fraychinaud A, DePolo A, Foundas AL. Swallowing lateralization: the effects of modified dual-task interference. Dysphagia. 2006;21(1):21–7.

    Article  PubMed  Google Scholar 

  17. Hamdy S, Aziz Q, Rothwell JC, Power M, Singh KD, Nicholson DA, Thompson DG. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998;115(5):1104–12.

    Article  CAS  PubMed  Google Scholar 

  18. Mistry S, Verin E, Singh S, Jefferson S, Rothwell JC, Thompson DG, Hamdy S. Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. J Physiol. 2007;585(2):525–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bloom JS, Hynd GW. The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev. 2005;15(2):59–71.

    Article  PubMed  Google Scholar 

  20. Witelson SF. Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain. 1989;112(3):799–835.

    Article  PubMed  Google Scholar 

  21. Clarke JM, Zaidel E. Anatomical–behavioral relationships: corpus callosum morphometry and hemispheric specialization. Behav Brain Res. 1994;64(1):185–202.

    Article  CAS  PubMed  Google Scholar 

  22. Ng YT, McCarthy CM, Tarby TJ, Bodensteiner JB. Agenesis of the corpus callosum is associated with feeding difficulties. J Child Neurol. 2004;19(6):443–6.

    Article  PubMed  Google Scholar 

  23. Schilmoeller G, Schilmoeller K. Miding the gap: a large scale survey of agenesis of the corpus callosum and other callosal anomalies. http://www.umaine.edu/edhd/research/acc/research/acc-research-report/. Accessed 3 Aug 2016.

  24. Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA. 2006;296(13):1602–8.

    Article  CAS  PubMed  Google Scholar 

  25. Benfer KA, Weir KA, Bell KL, Ware RS, Davies PS, Boyd RN. Oropharyngeal dysphagia and gross motor skills in children with cerebral palsy. Pediatrics. 2013;131(5):e1553–62.

    Article  PubMed  Google Scholar 

  26. Gisel EG, Alphonce E, Ramsay M. Assessment of ingestive and oral praxis skills: children with cerebral palsy vs. controls. Dysphagia. 2000;15(4):236–44.

    Article  CAS  PubMed  Google Scholar 

  27. Malandraki GA, Mishra A, Gordon A, Sheppard JJ. Dysphagia in pediatric hemiplegia: more prevalent than expected. Orlando: Annual American Speech-Hearing-Language Association (ASHA) Convention; 2014.

    Google Scholar 

  28. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44(4):625–32.

    Article  CAS  PubMed  Google Scholar 

  29. Lazar M. Mapping brain anatomical connectivity using white matter tractography. NMR Biomed. 2010;23:821–35.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mori S, Crain BJ, Chacko VP, Van Zijl P. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9.

    Article  CAS  PubMed  Google Scholar 

  31. Mori S. Introduction to diffusion tensor imaging. Boston: Elsevier; 2007. p. 110.

    Google Scholar 

  32. Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krägeloh-Mann I. Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography. Neuroimage. 2002;16(4):954–67.

    Article  PubMed  Google Scholar 

  33. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed. 2006;81(2):106–16.

    Article  PubMed  Google Scholar 

  34. Hofer S, Frahm J. Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage. 2006;32(3):989–94.

    Article  PubMed  Google Scholar 

  35. Wakana S, Jiang H, van Zijl PCM, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230:77–87.

    Article  PubMed  Google Scholar 

  36. Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239–54.

    Article  PubMed  Google Scholar 

  37. Thomas B, Eyssen M, Peeters R, Molenaers G, Van Hecke P, De Cock P, Sunaert S. Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain. 2005;128(11):2562–77.

    Article  PubMed  Google Scholar 

  38. Weinstein M, Green D, Geva R, Schertz M, Fattal-Valevski A, Artzi M, Bashat DB. Interhemispheric and intrahemispheric connectivity and manual skills in children with unilateral cerebral palsy. Brain Struct Funct. 2014;219(3):1025–40.

    Article  PubMed  Google Scholar 

  39. Benfer KA, Weir KA, Bell KL, Ware RS, Davies PS, Boyd RN. Clinical signs suggestive of pharyngeal dysphagia in preschool children with cerebral palsy. Res Dev Disabil. 2015;38:192–201.

    Article  PubMed  Google Scholar 

  40. Sheppard JJ, Hochman R, Baer C. The dysphagia disorders survey: validation of an assessment for swallowing and feeding function in developmental disability. Res Dev Disabil. 2014;35(5):929–42.

    Article  PubMed  Google Scholar 

  41. Back SA, Craig A, Kayton RJ, Luo NL, Meshul CK, Allcock N, Fern R. Hypoxia–ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. J Cereb Blood Flow Metab. 2007;27(2):334–47.

    Article  CAS  PubMed  Google Scholar 

  42. McQuillen PS, Ferriero DM. Perinatal subplate neuron injury: implications for cortical development and plasticity. Brain Pathol. 2005;15(3):250–60.

    Article  CAS  PubMed  Google Scholar 

  43. Leopold NA, Daniels SK. Supranuclear control of swallowing. Dysphagia. 2010;25(3):250–7.

    Article  PubMed  Google Scholar 

  44. Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.

    CAS  PubMed  Google Scholar 

  45. Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL. Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage. 2008;42:285–95.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Teismann IK, Suntrup S, Warnecke T, Steinsträter O, Fischer M, Flöel A, Dziewas R. Cortical swallowing processing in early subacute stroke. BMC Neurol. 2011;11(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17(3):1429–36.

    Article  PubMed  Google Scholar 

  49. Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res. 2003;36(4):409–20.

    Article  CAS  PubMed  Google Scholar 

  50. Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, Diamant NE. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol. 1999;277(1):G219–25.

    CAS  PubMed  Google Scholar 

  51. Fabri M, Pierpaoli C, Barbaresi P, Polonara G. Functional topography of the corpus callosum investigated by DTI and fMRI. World J Radiol. 2014;6(12):895–906.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Ziemann U. Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci. 2007;27(45):12132–8.

    Article  CAS  PubMed  Google Scholar 

  53. Babaei A, Kern M, Antonik S, Mepani R, Ward BD, Li SJ, Hyde J, Shaker R. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol. 2010;299(2):G422–9.

    Article  CAS  Google Scholar 

  54. Watanabe Y, Abe S, Ishikawa T, Yamada Y, Yamane GY. Cortical regulation during the early stage of initiation of voluntary swallowing in humans. Dysphagia. 2004;19(2):100–8.

    Article  PubMed  Google Scholar 

  55. Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Koyama M, Fukuda H. PET study of pointing with visual feedback of moving hands. J Neurophysiol. 1998;79(1):117–25.

    CAS  PubMed  Google Scholar 

  56. Barritt AW, Smithard DG. Role of cerebral cortex plasticity in the recovery of swallowing function following dysphagic stroke. Dysphagia. 2009;24(1):83–90.

    Article  PubMed  Google Scholar 

  57. Staudt M. (Re-)organization of the developing human brain following periventricular white matter lesions. Neurosci Biobehav Rev. 2007;31(8):1150–6.

    Article  PubMed  Google Scholar 

  58. Juenger H, Koerte IK, Muehlmann M, Mayinger M, Mall V, Krägeloh-Mann I, Heinen F. Microstructure of transcallosal motor fibers reflects type of cortical (re-)organization in congenital hemiparesis. Eur J Paediatr Neurol. 2014;18(6):691–7.

    Article  PubMed  Google Scholar 

  59. Calis EA, Vengelers R, Sheppard JJ, Tibboel D, Evenhuis HM, Penning C. Dysphagia in children with severe generalized cerebral palsy and intellectual disability. Dev Med Child Neurol. 2008;50:625–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Cagla Kantarcigil, Avinash Mishra, Akila Rajappa, Manushree Karthik, Aditi Valada, Kamila Kaldan, and Chad Grossman for their help with data collection.

Funding

This work was supported by: a scholarship awarded to the first author, Grant: 2013/26715-6 by the Sao Paulo Research Foundation (FAPESP), SP – Brazil; the National Institute of Child Health and Human Development, National Institutes of Health - R01, HD 076436 (PI: Friel); and a seed fund from Purdue University (PI: Malandraki). The funding sources had no involvement in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia A. Malandraki.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourão, L.F., Friel, K.M., Sheppard, J.J. et al. The Role of the Corpus Callosum in Pediatric Dysphagia: Preliminary Findings from a Diffusion Tensor Imaging Study in Children with Unilateral Spastic Cerebral Palsy. Dysphagia 32, 703–713 (2017). https://doi.org/10.1007/s00455-017-9816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-017-9816-0

Keywords

Navigation