Skip to main content

Advertisement

Log in

New Swallowing Evaluation Using Piezoelectricity in Normal Individuals

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

This study aimed to elucidate the relationship between the piezoelectric waveform latency, hyoid bone movement, surface electromyogram (sEMG), and the pharyngeal transit time (PTT) during swallowing. Forty-one healthy subjects were divided into three age groups: younger (20–39 years, n = 8), middle-aged (40–59 years, n = 9), and older (60–79 years, n = 24). Motion analysis of the hyoid bone using videofluorography (VF), waveform analysis of the front neck using piezoelectric films, and sEMG of the suprahyoid muscle group were performed simultaneously. Latencies of the three movement phases were defined as upward (VFS1), forward (VFS2), and returning to starting position (VFS3). The three phases of the piezoelectric waveform—from wave initiation of the negative wave to the start of the second deep negative wave; from the start of the second deep negative wave to the start of the last positive wave (SLPW); and from the SLPW to the end of the last positive wave—were defined as PS1, PS2, and PS3, respectively. VFS1-3 and PS1-3 were significantly correlated. VFS1 and PS1 latencies were significantly longer with thick liquid than with thin liquid. VFS2, PS1, and PS2 latencies were longer in the older group than in the other two groups. The start of PS1 was nearly equal to those of sEMG and VFS1. Bolus arrival time in the valleculae was statistically equal to the end of the PS1 with both thin and thick liquids. To establish the swallowing screening using Piezoelectric film, further investigation is necessary in the dysphagia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Logemann JA. Evaluation and treatment of swallowing disorders. 2nd ed. Austin: Pro-ed; 1998.

    Google Scholar 

  2. Miller AJ. The neuroscientific principles of swallowing and dysphagia. San Diego: Singular Publishing Group Inc.; 1999.

    Google Scholar 

  3. Crary MA, Groher ME. Introduction to adult swallowing disorders. St. Louis: Elsevier Science; 2003.

    Google Scholar 

  4. Logemann JA, Pauloski BR, Rademaker AW, Colangelo LA, Kahrilas PJ, Smith CH. Temporal and biomechanical characteristics of oropharyngeal swallow in younger and older men. J Speech Lang Hear Res. 2000;43:1264–74.

    Article  CAS  PubMed  Google Scholar 

  5. Achem SR, Devault KR. Dysphagia in aging. J Clin Gastroenterol. 2005;39:357–71.

    Article  PubMed  Google Scholar 

  6. Akgün KM, Crothers K, Pisani M. Epidemiology and management of common pulmonary diseases in older persons. J Gerontol A Biol Sci Med Sci. 2012;67:276–91.

    Article  PubMed  Google Scholar 

  7. Cook IJ, Kahrilas PJ. American Gastroenterological Association technical review on management of oropharyngeal dysphagia. Gastroenterology. 1999;116:455–78.

    Article  CAS  PubMed  Google Scholar 

  8. Clavé P, Terré R, de Kraa M, Serra M. Approaching oropharyngeal dysphagia. Rev Esp Enferm Dig. 2004;96:119–31.

    Article  PubMed  Google Scholar 

  9. Clavé P, Almirall J, Esteve A, Verdaguer A, Berenguer M, Serra-Prat M. Oropharyngeal dysphagia—a team approach to prevent and treat complications. In: Taylor S, editor. Hospital Healthcare Europe 2005/2006. London: Campden Publishing Ltd.; 2005. p. N5–N8.

    Google Scholar 

  10. Logemann JA. Manual for the videofluorographic study of swallowing. 2nd ed. Austin: Pro-Ed; 2005.

    Google Scholar 

  11. Tamm I, Kortsik C. Severe barium sulfate aspiration into the lung: clinical presentation, prognosis and therapy. Respiration. 1999;66:81–4.

    Article  CAS  PubMed  Google Scholar 

  12. Yabunaka K, Sanada H, Sanada S, Konishi H, Hashimoto T, Yatake H, Yamamoto K, Katsuda T, Ohue M. Sonographic assessment of hyoid bone movement during swallowing: a study of normal adults with advancing age. Radiol Phys Technol. 2011;4:73–7.

    Article  PubMed  Google Scholar 

  13. Hafner G, Neuhuber A, Hirtenfelder S, Schmedler B, Eckel HE. Fiberoptic endoscopic evaluation of swallowing in intensive care unit patients. Eur Arch Otorhinolaryngol. 2008;265:441–6.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cichero JAY, Murdoch BE. Acoustic signature of the normal swallow: characterization by age, gender, and bolus volume. Ann Otol Rhinol Laryngol. 2002;111:623–32.

    Article  PubMed  Google Scholar 

  15. Salén B, Zakrisson JE. Electromyogram of the tensor tympani muscle in man during swallowing. Acta Otolaryngol. 1978;85:453–5.

    Article  PubMed  Google Scholar 

  16. Abe S, Kaneko H, Nakamura Y, Watanabe Y, Shintani M, Hashimoto M, Yamane G, Ide Y, Shimono M, Ishikawa T, Yamada Y, Hayashi T. Experimental device for detecting laryngeal movement during swallowing. Bull Tokyo Dent Coll. 2002;43:199–203.

    Article  PubMed  Google Scholar 

  17. Matsumi H, Koshino H, Hirai T, Yokoyama Y, Ikeda Y. Evaluation of swallowing function using ultrasound diagnostic methods. Prosthodont Res Pract. 2005;4:1–8.

    Article  Google Scholar 

  18. Hori K, Ono T, Tamine K, Kondo J, Hamanaka S, Maeda Y, Dong J, Hatsuda M. Newly developed sensor sheet for measuring tongue pressure during swallowing. J Prosthodont Res. 2009;53:28–32.

    Article  PubMed  Google Scholar 

  19. Ekberg O. The normal movements of the hyoid bone during swallow. Invest Radiol. 1986;21:408–10.

    Article  CAS  PubMed  Google Scholar 

  20. Kim Y, McCullough GH. Maximum hyoid displacement in normal swallowing. Dysphagia. 2008;23:274–9.

    Article  PubMed  Google Scholar 

  21. Palmer JB, Rudin NJ, Lara G, Crompton AW. Coordination of mastication and swallowing. Dysphagia. 1992;7:187–200.

    Article  CAS  PubMed  Google Scholar 

  22. Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ. Opening mechanisms of the human upper esophageal sphincter. Am J Physiol. 1989;257:748–59.

    Google Scholar 

  23. Vandaele DJ, Perlman AL, Cassell MD. Intrinsic fibre architecture and attachments of the human epiglottis and their contributions to the mechanism of deglutition. J Anat. 1995;186:1–15.

    PubMed Central  PubMed  Google Scholar 

  24. Measurement Specialties, Inc. (2008) Piezo film sensors technical manual. http://www.meas-spec.com/downloads/Piezo_Technical_Manual.pdf. Accessed 13 Oct 2014.

  25. Kawai H. The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys. 1969;8:975.

    Article  CAS  Google Scholar 

  26. Kanda K, Saito T, Iga Y, Higuchi K, Maenaka K. Influence of parasitic capacitance on output voltage for series-connected thin-film piezoelectric devices. Sensors. 2012;12:16673–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhou J, Fei P, Gao Y, Gu Y, Liu J, Bao G, Wang ZL. Mechanical-electrical triggers and sensors using piezoelectric microwires/nanowires. Nano Lett. 2008;8(9):2725–30.

    Article  CAS  PubMed  Google Scholar 

  28. Toyosato A, Nomura S, Igarashi A, Ii N, Nomura A. A relation between the piezoelectric pulse transducer waveforms and food bolus passage during pharyngeal phase of swallow. Prosthodont Res Pract. 2007;6:272–5.

    Article  Google Scholar 

  29. Youmans SR, Stierwalt JA. Normal swallowing acoustics across age, gender, bolus viscosity, and bolus volume. Dysphagia. 2011;26:374–84.

    Article  PubMed  Google Scholar 

  30. Dantas RO, Alves LM, Santos CM, de Cassiani A. Possible interaction of gender and age on human swallowing behavior. Arq Gastroenterol. 2011;48:195–8.

    Article  PubMed  Google Scholar 

  31. McCullough GH, Wertz RT, Rosenbek JC, Mills RH, Webb WG, Ross KB. Inter- and intrajudge reliability for videofluoroscopic swallowing evaluation measures. Dysphagia. 2001;16:110–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kendall KA, McKenzie S, Leonard RJ, Gonçalves MI, Walker A. Timing of events in normal swallowing: a videofluoroscopic study. Dysphagia. 2000;15:74–83.

    Article  CAS  PubMed  Google Scholar 

  33. Ishida R, Palmer JB, Hiiemae KM. Hyoid motion during swallowing: factors affecting forward and upward displacement. Dysphagia. 2002;17:262–72.

    Article  PubMed  Google Scholar 

  34. Dantas RO, Kern MK, Massey BT, Dodds WJ, Kahrilas PJ, Brasseur JG, Cook IJ, Lang IM. Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am J Physiol. 1990;258:675–81.

    Google Scholar 

  35. Sonies BC, Parent LJ, Morrish K, Baum BJ. Durational aspects of the oral-pharyngeal phase of swallow in normal adults. Dysphagia. 1988;3:1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Kendall KA, Leonard RJ. Hyoid movement during swallowing in older patients with dysphagia. Arch Otolaryngol Head Neck Surg. 2001;127:1224–9.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson ER, McKenzie SW, Sievers A. Aspiration pneumonia in stroke. Arch Phys Med Rehabil. 1993;74:973–6.

    CAS  PubMed  Google Scholar 

  38. Johnson ER, McKenzie SW, Rosenquist CJ, Lieberman JS, Sievers AE. Dysphagia following stroke: quantitative evaluation of pharyngeal transit times. Arch Phys Med Rehabil. 1992;73:419–23.

    CAS  PubMed  Google Scholar 

  39. Ueda N, Nohara K, Kotani Y, Tanaka N, Okuno K, Sakai T. Effects of the bolus volume on hyoid movements in normal individuals. J Oral Rehabil. 2013;40:491–9.

    Article  CAS  PubMed  Google Scholar 

  40. Taniguchi H, Tsukada T, Ootaki S, Yamada Y, Inoue M. Correspondence between food consistency and suprahyoid muscle activity, tongue pressure, and bolus transit times during the oropharyngeal phase of swallowing. J Appl Physiol. 2008;105:791–9.

    Article  PubMed  Google Scholar 

  41. Park T, Kim Y, McCullough G. Oropharyngeal transition of the bolus in post-stroke patients. Am J Phys Med Rehabil. 2013;92:320–6.

    Article  PubMed  Google Scholar 

  42. Sonies BC, Wang C, Sapper DJ. Evaluation of normal and abnormal hyoid bone movement during swallowing by use of ultrasound duplex-Doppler imaging. Ultrasound Med Biol. 1996;22:1169–75.

    Article  CAS  PubMed  Google Scholar 

  43. Bingjie L, Tong Z, Xinting S, Jianmin X, Guijun J. Quantitative videofluoroscopic analysis of penetration–aspiration in poststroke patients. Neurol India. 2010;58:42–7.

    Article  PubMed  Google Scholar 

  44. Chi-Fishman G, Sonies BC. Effects of systematic bolus viscosity and volume changes on hyoid movement kinematics. Dysphagia. 2002;17:278–87.

    Article  PubMed  Google Scholar 

  45. Perry JL, Bae Y, Kuehn DP. Effect of posture on deglutitive biomechanics in healthy individuals. Dysphagia. 2012;27:70–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Kimura.

Ethics declarations

Funding

This study was supported by a Grant-in-Aid for Scientific Research (No. 24500574 and 15K01362 to S. Kimura) from the Ministry of Education, Culture and Science: Japan.

Conflict of Interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sogawa, Y., Kimura, S., Harigai, T. et al. New Swallowing Evaluation Using Piezoelectricity in Normal Individuals. Dysphagia 30, 759–767 (2015). https://doi.org/10.1007/s00455-015-9654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-015-9654-x

Keywords

Navigation