Skip to main content
Log in

Modulation of Activity in Swallowing Motor Cortex Following Esophageal Acidification: A Functional Magnetic Resonance Imaging Study

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Esophageal acid exposure induces sensory and motility changes in the upper gastrointestinal tract; however, the mechanisms involved and the effects on activity in the brain regions that control swallowing are unknown. The aim of this study was to examine functional changes in the cortical swallowing network as a result of esophageal acidification using functional magnetic resonance imaging (fMRI). Seven healthy volunteers (3 female, age range = 20–30 years) were randomized to receive either a 0.1 M hydrochloric acid or (control) saline infusion for 30 min into the distal esophagus. Postinfusion, subjects underwent four 8 min blocks of fMRI over 1 h. These alternated between 1 min swallowing water boluses and 1 min rest. Three-dimensional cluster analysis for group brain activation during swallowing was performed together with repeated-measures ANOVA for differences between acid and saline. After acid infusion, swallowing-induced activation was seen predominantly in postcentral gyrus (p < 0.004). ANOVA comparison of acid with saline showed a significant relative reduction in activation during swallowing of the precentral gyrus (M1) BA 4 (p < 0.008) in response to acid infusion. No areas of increased cortical activation were identified with acid vs. saline during swallowing. Esophageal acidification inhibits motor and association cortical areas during a swallowing task, probably via changes in vagal afferent or nociceptive input from the esophagus. This mechanism may play a protective role, facilitating acid clearance by reduced descending central motor inhibition of enteric/spinal reflexes, or by preventing further ingestion of injurious agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 2001;140(3):280–289.

    Article  PubMed  CAS  Google Scholar 

  2. Hamdy S, Rothwell JC, Aziz Q, Singh KD, Thompson DG. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci 1998;1(1):64–68.

    Article  PubMed  CAS  Google Scholar 

  3. Fraser C, Rower M, Hamdy S, Rothwell J, Hobday D, Hollander I, Tyrell P, Hobson A, Williams S. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron 2002;34(5):831–840.

    Article  PubMed  CAS  Google Scholar 

  4. Gow D, Hobson AR, Furlong P, Hamdy S. Characterising the central mechanisms of sensory modulation in human swallowing motor cortex. Clin Neurophysiol 2004;115(10):2382–2390.

    PubMed  Google Scholar 

  5. Holloway RH. Esophageal body motor response to reflux events: secondary peristalsis. Am J Med 2000;108(Suppl 4a):20S–26S.

    Article  PubMed  Google Scholar 

  6. Helm JF, Dodds WJ, Pelc LR, Palmer DW, Hogan WJ, Teeter BC. Effect of esophageal emptying and saliva on clearance of acid from the esophagus. N Engl J Med 1984;310(5):284–288.

    Article  PubMed  CAS  Google Scholar 

  7. Brown CM, Snowdon CF, Slee B, Sandle LN, Rees WD. Effect of topical oesophageal acidification on human salivary and oesophageal alkali secretion. Gut 1995;36(5):649–653.

    Article  PubMed  CAS  Google Scholar 

  8. Smit CF, van Leeuwen JA, Mathus-Vliegen LM, Devriese PP, Semin A, Tan J, Schouwenburg PF. Gastropharyngeal and gastroesophageal reflux in globus and hoarseness. Arch Otolaryngol Head Neck Surg 2000;126(7):827–830.

    PubMed  CAS  Google Scholar 

  9. Knight RE, Wells JR, Parrish RS. Esophageal dysmotility as an important co-factor in extraesophageal manifestations of gastroesophageal reflux. Laryngoscope 2000;110(9):1462–1466.

    Article  PubMed  CAS  Google Scholar 

  10. Grossi L, Ciccaglione AF, Travaglini N, Marzio L, Swallows, oesophageal and gastric motility in normal subjects and in patients with gastro-oesophageal reflux disease: a 24-h pH-manometric study. Neurogastroenterol Motil 1998;10(2):115–121.

    Google Scholar 

  11. Castell DO, Murray JA, Tutuian R, Orlando RC, Arnold R. Review article: the pathophysiology of gastro-oesophageal reflux disease-oesophageal manifestations. Aliment Pharmacol Ther 2004;20(Suppl 9):14–25.

    Article  PubMed  Google Scholar 

  12. Lundell L, Myers JC, Jamieson GG. Is motility impaired in the entire upper gastrointestinal tract in patients with gastro-oesophageal reflux disease? Scand J Gastroenterol 1996;31(2):131–135.

    Article  PubMed  CAS  Google Scholar 

  13. Crozier RE, Glick ME, Gibb ME, Gibb SP, Ellis FH Jr, Veerman JM. Acid-provoked esophageal spasm as a cause of noncardiac chest pain. Am J Gastroenterol 1991;86(11):1576–1580.

    PubMed  CAS  Google Scholar 

  14. Sarkar S, Aziz Q, Woolf CJ, Hobson AR, Thompson DG. Contribution of central sensitisation to the development of non-cardiac chest pain. Lancet 2000;356(9236):1154–1159.

    Article  PubMed  CAS  Google Scholar 

  15. Atkinson M, Bennett JR. Relationship between motor changes and pain during esophageal acid perfusion. Am J Dig Dis 1968;13(4):346–350.

    Article  PubMed  CAS  Google Scholar 

  16. Garabedian M. Uses of esophageal manometry and acid perfusion in the study of gastroesophageal reflux and hiatal hernia. Surg Clin North Am 1971;51(3):589–596.

    PubMed  CAS  Google Scholar 

  17. Wallin L, Boesby S, Madsen T. The effect of HCl infusion in the lower part of the oesophagus on the pharyngo-oesophageal sphincter pressure in normal subjects. Scand J Gastroenterol 1978;13(7):821–826.

    PubMed  CAS  Google Scholar 

  18. Madsen T, Wallin L, Boesby S, Larsen VH. Spontaneous peristaltic activity in the oesophagus after imitated acid gastro-oesophageal reflux. A study in normal subjects. Scand J Gastroenterol 1982;17(6):811–815.

    Article  PubMed  CAS  Google Scholar 

  19. Malmud LS, Fisher RS. Radionuclide studies of esophageal transit and gastroesophageal reflux. Semin Nucl Med 1982;12(2):104–115.

    Article  PubMed  CAS  Google Scholar 

  20. Madsen T, Wallin L, Boesby S, Larsen VH. Oesophageal peristalsis in normal subjects. Influence of pH and volume during imitated gastro-oesophageal reflux. Scand J Gastroenterol 1983;18(4):513–518.

    PubMed  CAS  Google Scholar 

  21. Burns TW, Venturatos SG. Esophageal motor function and response to acid perfusion in patients with symptomatic reflux esophagitis. Dig Dis Sci 1985;30(6):529–535.

    Article  PubMed  CAS  Google Scholar 

  22. Kjellen G, Tibbling L. Oesophageal motility during acid-provoked heartburn and chest pain. Scand J Gastroenterol 1985;20(8):937–940.

    Article  PubMed  CAS  Google Scholar 

  23. Katz PO, Dalton CB, Richter JE, Wu WC, Castell DO. Esophageal testing of patients with noncardiac chest pain or dysphagia. Results of three years’ experience with 1161 patients. Ann Intern Med 1987;106(4):593–597.

    PubMed  CAS  Google Scholar 

  24. Thompson DG, Andreollo NA, McIntyre AS, Earlan RJ. Studies of the oesophageal clearance responses to intraluminal acid. Gut 1988;29(7):881–885.

    Article  PubMed  CAS  Google Scholar 

  25. Andreollo NA, Thompson DG, Kendall GP, McIntyre AS, Earlam RJ. Motor responses of the upper esophageal sphincter and body to intraluminal acid. Braz J Med Biol Res 1989;22(1):51–60.

    PubMed  CAS  Google Scholar 

  26. Helm JF, Massey BT, Martin CJ, Dodds WJ, Hogan WJ, Arndorfer RC. Oesophageal acidification does not increase lower oesophageal sphincter pressure. Gut 1990;31(3):266–269.

    Article  PubMed  CAS  Google Scholar 

  27. Bontempo I, Piretta L, Corazziari E, Michetti F, Anzini F, Torsoli A. Effects of intraluminal acidification on oesophageal motor activity. Gut 1994;35(7):884–890.

    Article  PubMed  CAS  Google Scholar 

  28. Anggiansah A, Taylor G, Marshall RE, Bright NF, Owen WA, Owen WJ. Oesophageal motor responses to gastro-oesophageal reflux in healthy controls and reflux patients. Gut 1997;41(5):600–605.

    Article  PubMed  CAS  Google Scholar 

  29. McDougall NI, Mooney RB, Ferguson WR, Collins JS, McFarland RJ, Love AH. The effect of healing oesophagitis on oesophageal motor function as determined by oesophageal scintigraphy and ambulatory oesophageal motility/pH monitoring. Aliment Pharmacol Ther 1998;12(9):899–907.

    Article  PubMed  CAS  Google Scholar 

  30. Simren M, Silny J, Holloway R, Tack J, Janssens J, Sifrim D. Relevance of ineffective oesophageal motility during oesophageal acid clearance. Gut 2003;52(6):784–790.

    Article  PubMed  CAS  Google Scholar 

  31. Bhalla V, Liu J, Puckett JL, Mittal RK. Symptom hypersensitivity to acid infusion is associated with hypersensitivity of esophageal contractility. Am J Physiol Gastrointest Liver Physiol 2004;287(1):G65–G71.

    Article  PubMed  CAS  Google Scholar 

  32. Aziz Q, Thompson DG. Brain-gut axis in health and disease. Gastroenterology 1998;114(3):559–578.

    Article  PubMed  CAS  Google Scholar 

  33. Willert RP, Woolf CJ, Hobson AR, Delaney C, Thompson dG, Aziz Q. The development and maintenance of human visceral pain hypersensitivity is dependent on the N-methyl-D-aspartate receptor. Gastroenterology 2004;126(3):683–692.

    Article  PubMed  CAS  Google Scholar 

  34. Sarkar S, Hobson AR, Hughes A, Growcott J, Woolf CJ, Thompson DG, Aziz Q. The prostaglandin E2 receptor-1 (EP-1) mediates acid-induced visceral pain hypersensitivity in humans. Gastroenterology 2003;124(1):18–25.

    Article  PubMed  CAS  Google Scholar 

  35. Sarkar S, Hobson AR, Furlong PL, Woolf cJ, Thompson DG, Aziz Q. Central neural mechanisms mediating human visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2001;281(5):G1196–G202.

    PubMed  CAS  Google Scholar 

  36. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med 1996;35(3):346–355.

    PubMed  CAS  Google Scholar 

  37. Bullmore ET, Brammer MJ, Rabe-Hesketh S, Curtis VA, Morris RG, Williams SC, Sharma T, McGuire PK. Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 1999;7(1):38–48.

    Article  PubMed  CAS  Google Scholar 

  38. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R. Event-related fMRI: characterizing differential responses. Neuroimage 1998;7(1):30–40.

    Article  PubMed  CAS  Google Scholar 

  39. Bullmore E, Long C, Suckling J, Fadili J, Calvert G, Zelaya F, Carpenter TA, Brammer M. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 2001;12(2):61–78.

    Article  PubMed  CAS  Google Scholar 

  40. Talairach J, Tournoux P, Musolino A, Missir O. Stereotaxic exploration in frontal epilepsy. Adv Neurol 1992;57:651–688.

    PubMed  CAS  Google Scholar 

  41. Kern M, Hoffman C, Hyde J, Shaker R. Characterization of the cerebral cortical representation of heartburn in GERD patients. Am J Physiol Gastrointest Liver Physiol 2004;286(1):G174–G181.

    Article  PubMed  CAS  Google Scholar 

  42. Lang IM, Dean C, Medda BK, Aslam M, Shaker R. Differential activation of medullary vagal nuclei during different phases of swallowing in the cat. Brain Res 2004;1014(1–2):145–163.

    Article  PubMed  CAS  Google Scholar 

  43. Kern M, Lawal A, Sanjeevi A, Hyde J, Shaker R. Confirmation of neural hypersensitivity following central sensitisation by fMRI recording of subliminal esophageal distension. Gastroenterology 2005; 128(4 Suppl 2): abstract M1591.

  44. Kern MK, Birn RM, Jaradeh S, Jesmanowicz A, Cox RW, Hyde JS, Shaker R. Identification and characterization of cerebral cortical response to esophageal mucosal acid exposure and distention. Gastroenterology 1998;115(6):1353–1362.

    Article  PubMed  CAS  Google Scholar 

  45. Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, Diamant NE. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol 1999;277(1 Pt 1):G219–G225.

    PubMed  CAS  Google Scholar 

  46. Mosier K, Patel R, Liu WC, Kalnin A, Maldjian J, Baredes S. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope 1999;109(9):1417–1423.

    Article  PubMed  CAS  Google Scholar 

  47. Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 2001;85(2):938–950.

    PubMed  CAS  Google Scholar 

  48. Hobson AR, Khan RW, Sarkar S, Rurlong PL, Aziz Q. Development of esophageal hypersensitivity following experimental duodenal acidification. Am J Gastroenterol 2004;99(5):813–820.

    Article  PubMed  Google Scholar 

  49. Broussard DL, Lynn RB, Wiedner EB, Altschuler SM. Solitarial premotor neuron projections to the rat esophagus and pharynx: implications for control of swallowing. Gastroenterology 1998;114(6):1268–1275.

    Article  PubMed  CAS  Google Scholar 

  50. Farina S, Tinazzi M, LePera D, Valeriani M. Pain-related modulation of the human motor cortex. Neurol Res 2003;25(2):130–142.

    Article  PubMed  Google Scholar 

  51. Drewes AM, Reddy H, Staahl C, Pedersen J, Funch-Jensen P, Arendt-Nielsen L, Gregersen H. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid. World J Gastroenterol 2005;11(28):4367–4374.

    PubMed  Google Scholar 

  52. Lang IM, Medda BK, Gray M, Shaker R. Esophageal acidification and distension activate different sets of medullary vagal nuclei. Gastroenterology 2005;128(4 Suppl 2): abstract M1595.

  53. Shuai XW, Xie PY. Expression and localization of c-Fos and NOS in the central nerve system following esophageal acid stimulation in rats. World J Gastroenterol 2004;10(15):2287–2291.

    PubMed  CAS  Google Scholar 

  54. Suwanprathes P, Ngu M, Ing A, Hunt G, Seow F. c-Fos immunoreactivity in the brain after esophageal acid stimulation. Am J Med 2003;115(Suppl 3A):31S–38S.

    Article  PubMed  CAS  Google Scholar 

  55. Chae JH, Nahas Z, Lomarev M, Denslow S, Lorberbaum JP, Bohning DE, George MS. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res 2003;37(6):443–455.

    Article  PubMed  Google Scholar 

  56. Hamdy S, Rothwell JC, Brooks DJ, Bailey D, Aziz Q, Thompson DG. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. J Neurophysiol 1999;81(4):1917–1926.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

P. Paine was funded by the Wellcome Trust (UK). The authors thank the MR radiography staff for their invaluable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Paine.

Additional information

Studies were performed in the Department of GI Sciences and Translational Imaging Unit, University of Manchester, UK

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paine, P.A., Hamdy, S., Chitnis, X. et al. Modulation of Activity in Swallowing Motor Cortex Following Esophageal Acidification: A Functional Magnetic Resonance Imaging Study. Dysphagia 23, 146–154 (2008). https://doi.org/10.1007/s00455-007-9114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-007-9114-3

Keywords

Navigation