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Abstract. We propose a method to analyze the density of packings of spheres of fixed
radius in the hyperbolic space of any dimension m > 2, and prove that for all but countably
many radii, optimally dense packings must have low symmetry.

1. Introduction

While the study of densest packings of spheres in Euclidean space has made impressive
gains in recent years [H], the analogous study in hyperbolic space has been held back at
a fundamental level; there has not been a convincing approach to define what one should
mean by “densest packing of spheres” in hyperbolic space [Bo2], [Fej], [FeK], [FKK];
see especially the discussion on pp. 831-834 of [FeK].

Intuitively the difficulty in hyperbolic space is due to the feature that in a packing
of equal spheres the ratio, of the number of spheres intersecting the surface of a region
to the number contained in that region, need not vanish as the region increases in size,
and therefore defining density in (the noncompact) hyperbolic space, as the limit of the
relative density within expanding compact subregions, is too sensitive to the details of
the boundary of the subregions. There is an instructive example by Boroczky [Bol],
[FeK] of a packing x of congruent disks in the hyperbolic plane, together with a pair of
tilings, 7 and T, with the following properties. Each tiling consists of congruent copies
of a single polygonal tile, and each tile in the corresponding tiling contains a single disk
of x; but the tile for 77 has a larger volume than that of 75, so the “relative density” of
the packing x would be lower if defined using 7} rather than 75.

In this paper we do not attempt to define densities for all packings of hyperbolic
space, for instance that of Boroczky. However, we show that there is a natural meaning

* This research was supported in part by Texas ARP Grant 003658-158 and NSF Grant DMS-0071643.
T Current address: Mathematics Department, University of California at Davis, Davis, CA 95616, USA.
Ibowen @math.ucdavis.edu.



24 L. Bowen and C. Radin

for “optimally dense” packings in hyperbolic space. Furthermore, we show that only
for a special countable set of radius values R do congruent balls of radius R have
optimally dense packings with high symmetry. This contrasts with Euclidean space for
dimensions 2 and 3, where for each radius R there exists a high symmetry packing
(lattice packing) of spheres with radius R which is optimally dense. Intuitively, to define
“optimally dense packings” we associate to a packing x an invariant measure (., on a
space of packings and define an average density D(u,) to such a measure. It should be
noted, however, that we cannot do this for every packing since there are packings like
Borozcky’s example that have no well-defined density. So our methods necessarily entail
a restriction on the kinds of packings under consideration. This may seem unexpected
from the classical viewpoint. In the conclusion of the paper we justify the appropriateness
of our mathematical approach in defining optimal density packings.

2. Definitions and Results

For definiteness we choose a metric d (-, -) such that our m-dimensional hyperbolic space
H™, m > 2, has curvature —1, and choose a distinguished “origin” O so we can identify
H™ with the space G/ ¥ of left cosets of the orientation-preserving unimodular isometry
group G of H" by the (compact) stabilizer subgroup X of O, and G acts on H"” on the
left. (See [V] for a general reference on hyperbolic spaces and their congruence groups.)

We note that if G has its usual metrizable topology and G/ X its quotient topology,
the pairing, of the left cosets g X with the images of O under g, is a homeomorphism.
We fix the normalization of the Haar measure j1g on G such that its connection with the
measure [, on H™ associated with its metric is u,,[S] = /Lg[?T(Bl(S)], where 7 is the
projection of G onto G/ X .

We are concerned with the density of packings of H” by congruent closed balls. By a
closed ball (of radius R) in a metric space we mean the set of points in the space whose
distance from some point—called the “center”’—is less than or equal to R. By a packing
of a metric space by balls we mean a collection of balls in that space with pairwise
disjoint interiors.

In Euclidean space one can show, using similarity, that the maximal density of pack-
ings by congruent balls is independent of the radius of the balls. In hyperbolic space this
is not the case, as we note at the end of this section. In part to analyze this, we consider
the symmetry of packings.

Definition 1.

(a) The “symmetry group” of packing x is the group I'y = {g € G | gx = x}, using
the notation gx to denote the natural action of g € G on x by the rigid motion g.

(b) A packing for which the symmetry group is cocompact in G is called a “periodic
packing.” It is a “nonperiodic packing” otherwise.

For all dimensions we use the following notation introduced in [Bow] (where packings
with such balls were studied).
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Definition 2. The radius R of a ball in H" is “tight” if the regular simplex of side
length 2R admits a (full-face to full-face) tiling of H"™, called the associated “tight-
simplex packing.”

For balls of a fixed tight radius R, there is a canonical packing with the centers of
the balls placed at the vertices of the simplices. It can be shown that this packing has
high symmetry: it has a symmetry group, cocompact in G, with a fundamental domain
that can be fashioned from part of the simplex determined by the centers of m + 1 balls
which are pairwise neighbors, that is, have centers separated by 2R. We show that this
packing is optimally dense according to the definition we introduce below.

Our objective is to define a notion of optimally dense packings for balls of radius
R > 0. We analyze the situation for the whole range of positive radii, and show that,
in contrast to the case of tight radii, for most radii the optimally dense packings cannot
have a symmetry group with compact fundamental domain, or, equivalently [Bea], [Kat],
cannot have a symmetry group which is cocompact in the isometry group G.

We use the following notation, consistent for instance with [MaM].

Definition 3. A packing for which the symmetry group is cocompact in G is called
“periodic” or said to have “high” symmetry. The remaining packings are called “non-
periodic” and said to have “low” symmetry.

Our next objective is a definition for optimally dense packings. For fixed R > 0 we
begin with the space Sk of all “relatively dense” packings of H™ by (closed) R-balls,
that is, packings x of H™, with R-balls, having the property that any closed R-ball in
H™ intersects a ball of x. For a packing x we denote the set of centers of its balls by C,.
On S we put the following metric:

1
dR(X, y) = Sup _h(Bﬂmva Bnﬂcy)s (l)
n

n>1

where B, denotes the closed ball of radius n centered at the origin, and for compact sets
A and B we use the Hausdorff metric

h(A, B) Emax{sup nf d(a, b), sup ingd(a,b)} . 2)

i
acA beB beB 4<

It is not hard to see [RaW] that S is compact in this metric topology, and that the
natural action (g, x) € G x Sg —> g(x) € Sk of the isometry group G of H" on Sg
is (jointly) continuous. Let M (R) be the family of Borel probability measures on Sg.
We call a measure u© € M(R) “invariant” if for any Borel set E € Sg and any g € G,
w(gE) = p(E). Let M;(R) be the subset of invariant measures and let M{(R) be
the convex extreme (“‘ergodic”) points of M, (R), all in their weak* topology, in which
M(R) and M (R) are compact.

Some relevant elements of M$(R) can be constructed as follows. Suppose x is a
periodic packing, i.e. the symmetry group I'y of x is cocompact in G. We will construct
a measure 1, € MS(R) whose support is contained in the orbit O(x) = {gx | g €
G} C Sg of x. O(x) is naturally homeomorphic to the (metrizable) space G/ I, of
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left cosets by the homeomorphism ¢,: O(x) — G/, with ¢,(gx) = gI'y. There is a
natural probability measure on G/ T, induced by Haar measure on G by the projection
map ,: G — G/T,. (Aside from an overall normalization the measure on G/ ", can
be defined on sufficiently small open balls B C G/TI', as the Haar measure of any of
the components of 7 ! (B).) Hence ¢, induces a probability measure /i, on O(x). This
measure can then be extended to all of Sk in the following way: u, (E) = i, (ENO(x))
for any Borel set E C Sg. We use the term “periodic measure” to denote any measure
in M;(R) associated in this way with the orbit of a periodic packing. It is not hard to
prove from the uniqueness of the Haar measure on G that there is only one probability
measure, with support in the orbit of a periodic packing, which is invariant under G.

For any p € H"™ we now define the real-valued function F,, on Sk as the indicator
function of the set of all packings x such that p is contained in a ball of x. (The latter
condition will sometimes be expressed as p € x.) Finally, in the spirit of [BeS] we define
optimal density through invariant measures as follows.

Definition 4. For any invariant measure © € M, (R), the “average density” D(u) is
defined as fSR F,(y)dp(y).

Note: the average density D () is independent of the choice of p, because of the invari-
ance of the measure, so p is not needed in the notation. For convenience we sometimes
use p = O.

For periodic packings x there is an obvious notion of density using a fundamental
domain of T",. We prove that our definition of density coincides with this intuitive notion
for such special x.

Proposition 1.  If x is a periodic packing, D(u,) is the relative volume of any funda-
mental domain for T taken up by the balls of x.

Another justification for this notion of density comes from an ergodic theorem of
Nevo ([Ne, Theorem 1] for dimension m > 3; [NeS, Theorem 3] for m > 2) which has
the following consequence.

Proposition 2.  For any ergodic measure . € M$(R), and p-almost every packing
y € Sg, the average density D(u) is the limit of the relative fraction in expanding
spheres centered at O taken up by the balls in the packing y.

We now define optimality through measures.

Definition 5. D(R) = sup,,. ME(R) D(u) is called the “optimal density for radius R,”
and any ergodic measure ji € MS(R) is called “optimally dense (for radius R)” if
D(jx) = D(R). Those packings, in the support of an optimally dense measure, whose
orbit under G is dense in the support of that measure, are called “optimally dense” (for
that radius).

Our first main result asserts the existence of optimally dense packings.
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Theorem 1. For any radius R > 0 there exists an optimally dense measure p €
MS(R), and a subset of the support of w, of full p-measure, of optimally dense packings.

There may be many optimally dense measures for a given R.
We next consider the question of the existence of optimally dense packings having
high symmetry. We prove the following result.

Theorem 2. There are only countably many radii R > 0 for which there exist periodic
optimally dense packings. Balls with tight radii have periodic optimally dense packings.

This result shows that for most values of R every optimal packing is nonperiodic, that
is, has low symmetry.

We use the following examples of packings with tight radii. In the hyperbolic plane
there are equilateral triangles with any positive angle less than 7 /3, and furthermore the
side length of an equilateral triangle is determined by the angle. If R, is half the side
length of an equilateral triangle of angle 2 /n for some integer n > 6 (i.e. cosh(2R,) =
cot(2m/n) cot(r/n)), then about a “central” disk of radius R, in the plane one can
position n other disks of that radius, all having centers at distance 2R,, from that of the
central disk, and with the interiors of the n 4 1 disks being pairwise disjoint. For each n
this extends naturally to what we called above a tight-simplex packing; the “density” of
such a packing, which we show by Theorem 2 to be optimal, is easily computed to be
[3csc(m/n) — 6]/[n — 6] (see p. 239 of [Fej]), and is seen to be increasing in n.

3. Computing Optimal Density

We begin with a proof of Proposition 1, which deals with the simplest sort of packings,
those which are periodic.

Proof of Proposition 1. Suppose x is a periodic packing. Let 7 C H™ be a fundamental
domain for I, let F = 7151]: , let K, € H™ be the union of the disks in x and let
Ko C Sk be the set of all packings for which O is in a disk. Recall that we associated to
a periodic packing x a measure u, on Sg constructed using projection maps 7,: G —
G/ T, and an isomorphism ¢g,: O(x) — G/T,. It is not hard to see that n(gl[l(x] =
77 q:[Ko N g ' (G/T,)]} and therefore

pn(KiNF) oo IKANF) _ pglry {axlKo N g G/ TN N F)

o (F) 1g(F) g (F)
= fidgd Ko Ng; G/ TON} = ne(Ko), 3)
which proves the proposition. |

Proof of Propostion 2.  Applying Nevo’s theorem [NeS, Theorem 3] to the indicator
function Fp, we get that D(u) = f y Fodu can be computed as the limit

limn_,oc[l/ug(nalB,,)]f”qB f(gz)dug(g). The connection between the invariant
o B
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Fig. 1. Voronoi cell, radius R7.

measures on G and H™, as noted at the beginning of this section, then implies that

for p-almost every packing x € Sk, D(u) = lim,o[1/ 1 (By)] fB” Fy(x)dum(q),
which proves the proposition. O

For y € Sg we wish to focus on two ways to represent the packing in terms of tilings
of H™. For the first, consider, for each ball center a € C,, the geodesic segment ab which
joinsatoany b € C,, b # a, and the two half-spaces defined by the geodesic hyperplane
which is the perpendicular bisector of ab. Let B(a) be the subset of these half-spaces in
which a is contained. The “Voronoi cell of a,” which clearly contains the ball centered
at a, is the closure of the intersection of the half-spaces in B(a). The Voronoi cells of
y form a tiling of H"™, which we call the “Voronoi tiling of y,” the first of the tilings
of H™ associated with y with which we are interested. In a tight-simplex packing the
spheres constitute a single orbit, under the corresponding symmetry group, of any one of
the spheres. So in particular all the spheres have congruent Voronoi cells. We illustrate
this for dimension 2, with a disk of a tight-simplex packing sitting in its Voronoi cell;
Fig. 1 (resp. Fig. 2) corresponds to radius R7, which is approximately 0.6391 (resp. Rg,
which is approximately 0.8074), with density approximately 0.9143 (resp. 0.9197). Both
figures are in the Poincaré disk model (see [Rat]).

To define the other tiling of H™ associated with y, consider any ball B whose interior
does not contain any point of C, and whose boundary intersects C, in a set not contained
in any proper geodesic hyperplane of H™. The convex hull of B N Cy, is called a “Delone
cell” (or “dual Voronoi cell”) of y.

For those y € Sg such that O is contained in the interior of a Voronoi cell (which cell
we denote by Vo (y)), we define F (y) to be the relative volume of Vi (y) occupied by
the balls of y. (We note that F (y) is defined p-almost everywhere for any u € M;(R).)

Definition 6. For invariant measures u € M;(R) we define the “average Voronoi
density for u,” Dy (1), as ]SR F(y)du(y).

Similarly, for y € Sg such that O is contained in the interior of a Delone cell, we define
F(y) as the relative volume of the Delone cell of y that contains the origin occupied by
the balls of y. (We note that F'(y) is defined p-almost everywhere for any u € M;(R).)
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Fig. 2. Voronoi cell, radius Rg.

Definition 7. For invariant measures [ € M (R) we define the “average Delone
density for u,” Dy, (), as fSR F(y)du(y).

Proposition 3.  For any invariant measure i € Mj(R), the average Voronoi density
Dy (n) and the average Delone density Dy () both equal the average density D ().

Proof. Weprovethat Dy () = D(u); the case for the Delone density follows similarly.
For any subset X of H" and any » > 0 let N, (X) denote the open r-neighborhood of X,
that is, the union of all open r-balls centered at points of X. For a closed subset X C H"™,
let X denote the intersection of X with the closure of the complement of X.

Let V be the set of all Voronoi cells Vi (x) of all packings x such that O € C,. Define
a metric dy on V by the following:

dy (v, w) =inf{le > 0| dw C N (dv) and dv C N (dw)}.

It is easy to check that V is compact under this metric.
Let ¢ > 0 be given. We choose § > 0 such that the set {x € Sg | O € Ns(3Vo(x))}
has w-measure less than . We also require that for any v € V,

m(BRr) _ Mm(BR)
Mm(v — Ns(3v)) M (V)

A § > 0 exists with the above properties because of our assumption that all packings
x € S are relatively dense and because p is invariant.
Since V is compact there exists a finite collection {Vj};':] of subsets of )V such that

(@ VinVy,=0forj #k;

(b) Uj Vi=V;

(c) V;is Borel for all j;

(d) ifveV,weV,geXopand gv=w,then j =k;

(e) forany j, and for all v and w in V}, |t (Br)/tm (V) — i (Br)/ thm(w)| < &;

(f) if v, w € V;, then there exists a h € X so that dy(hv, w) < §/2 and Gy, =
{geeg|ghv=v}=G, ={g €| gw = w},ie. hvand w have the same
symmetry group.

“4)
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For each j > 0, fix an element v; of V; and choose a Borel set Vj/ C V; such that

(i) foreach v € V; there exists a g € X such that gv € Vj/;
(ii) if v € V; and g1, g2 € Lo and g1v, gv € V/, then giv = gyv, i.e. gl_lgz is in
the symmetry group of v;
(iii) foreachwv € Vj’, G, =Gy;
(iv) foreachv € Vj’, dy(v,vj) < §/2.

Foreach j > 0,letU; = [,y v. Theneachpoint p € dU; isin dw forsome w € V.
J

Hence by the fourth condition on V/, 9U; C Nj/2(dv;). Again by the fourth condition,
this implies that dU; C Ns(dv) forall v € Vj’. Note also that v; — Ns(dv;) C U;.

For each j > 0 and any Borel set U C H", define C;(U) = {x € Sg | there exists
g €Gsuchthat O € gU, g0 € C,and g~ 'Vo(x) € V/ }

To finish the proof, we prove each of the following (m )equalities in order:

|D(w) — Dy ()| = / Fo — ﬁdu‘ )
Sr
< / Fo — Fd/,L +eé (6)
Ui G (Uy)
- zj/ Fo— Fdu|+e )
Ci(U))
— (BB - [ Fau|+e ®)
C;(Uy)
Mm(BR)> / ~
= | w(C;(U))) — Fdu|+e ©)]
j(l/«m(Uj) 7 G (W)
:um(BR) ~
- |, f — Fdu| +e (10)
/ c;wy Mm(Uj)
:um(BR) N’
52-/ —Fldu+e (11)
" Jewp | i (U))
(B
< 2,/ Hn(Br) _ ’du—i-Ze (12)
C;(U;) Mm(v]
<3 (13)

Equation (5) holds by definition. Equation (6) will follow once we prove that
w(Sg — Uj C;(U;)) < e. By the choice of §, it suffices to prove that Sg — Uj C;(Uy C
{x € Sg | O € Ns(0Von(x))}. Solet x € S — Uj Ci(Ujp).Letg e Gand j > 0
be such that g~ 'Vp(x) € Vj/ and gO € C,. Then O ¢ gU; since x ¢ C;(U;). So
¢7'0 € g7'Vo(x) € V/ but g7'O ¢ U;. From the discussion after the definition of U;
it follows that g~'© € N5(dg~! Vo (x)) which implies O € N5(3 Vo (x)) as required.
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For (7), it suffices to prove that whenever j # k, C;(U;) N Cr(Uy) = @. So suppose
x € C;j(Uj) N Cy(Up). Then there exists g;, gx € G such that O € g;U; N g Uy,
80, g0 € C, and g;lV@(x) and g,:l Vo(x) are in Vj/. Since g;O and g; O are in C,
andin Vo (x) it must be that g;O = g, O. Hence gk_lgj € Y. Since there exists w; € Vj’
and wy € Vj/ such that gjw; = Vo(x) = grwx, gk_lgj w; = wg. Now condition (d) on
the collection {V;}!_, implies that j = k as required.

For (8), it suffices to show that fc,»(uj) o = u(C;(Bg)). Note that Fp is the char-
acteristic function of the set K = {x € Sg | O € x}. Hence it suffices to prove
that ©(C;(Uj) N K) = wu(C;(Bg)). We show that C;(U;) N K = C;(Bg). So let
xeCiU)NK.Letge Gandw € Vj’ such that O € gU;, gO € C, and gw = Vo (x).
Sincex € K, Oiscontained in the ball of x that is contained in V5 (x). Since gw = Vi (x)
and gO e C,, this ball is equal to gB;. So O € gB, which implies that x € C;(Bg).
Since x is arbitrary, C;(U;) N K C C;(Bg).

Now let x € C;j(Bg). Itis clear from the definitions that x € C;(U;). Let g € G such
that O € gB and gO € C,. Since O € gBg, d(O, gO) < R. Since gO € C,, this
impliesthatd (O, Cy) < R,i.e.O € x,x € K.Sincex isarbitrary, C;(Br) C C;(U;)NK
as required.

Next we prove (9). It suffices to prove that u(C;(U;)) = u(C;j(Br))(um(U;)/
Wm(Bg)). First we define a function W: C;(U;) — G (we denote W(x) by W,). This
function will soon be used to define a (left) invariant measure on G. For each j > 0, let
F; be the interior of a fundamental domain for the symmetry group G, of v;. We show
that for every x € C;(U;) there is a unique g € G such that O € g(U; ﬂ Fi), 80 € C,
and g7 'V (x) € VJ/ Given this, we define ¥, = g.

By the definition of C;(U;), there exists a g € G such that O € gU;, gO € C, and
g 'Wolx) € V]/. By right multiplying g by an element of the symmetry group of v; if
necessary, we may assume that O € g(U; N F;). Now suppose that g; and g, in G are
such thatfork = 1,2, O € g(U; N F;), g0 € C, and gk_1 Vo(x) € Vj’. Since there is
only one element of C, in Vo (x)and g;O and 2O arein C andin Vi (x), it must be that
810 = g,0. Hence g, g1 € Zp. Since g 'Wo(x) and g2 Wo(x) are in V there exists
wi, Wy € V/ such that Vo (x) = giw; = gws. So, g5 g1w1 = w;. Since g, g1 € X0,
the second condltlon on Vj/ implies that w; = w; and g2 g1 € Gy, . The third condition
on Vj/ implies that G,,, = G, $0 gz_lgl € G,,. Since O € g1(U; N F;) N ga2(U; N Fj),
gl_l(Q eUNF; ﬂgl_lgz(Uj N F;). Hence F; ﬂgl_lngj # () which implies that gl_lgz
is the identity (since F; in the interior of a fundamental domain G ;). This shows that
W, is well-defined. ‘

We claim that if x € C;(U;) and g € G such that O € gW,(U; N F;), then
W,, = g¥,. By definition of ¥, O € ¥, (U; N Fj), ¥, O € C, and \IJ_IVo(x) € V’
Hence gW,0 € gC, = Cyand (W 'g7gVo(x) € V/. Since O € gW,(U; N Fj) C
gV, [V Vo (x)] = gVo(x), it must be that gVo (x) = V@(gx) Hence V!¢~V (gx)
€ Vj’. Itfollows that W, = gW, as claimed. Itis now elementary to prove thath\Il (g) =

Wl (hg) forany h, g € G satisfying h¥~'(g) € C;(U;) and g € W (C;(U))).

Now we define a measure ug on G as follows First,if E C G, g € G and gE C
W(C;(Uj)), then define ,ug(E) = pu(W- 1(gE)) By the above ,u (E) is well-defined.
For an arbitrary Borel subset E of G, define ,ug(E) = X2 1/Lg(E) where {E;} is a
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partition of E for which there exists g; € G with g;(E;) C W(C;(U;)). Such partitions
exist because W(C;(U;)) ={g € G| O e g(U;NF)} = n;l(Uj ﬂ]-"j)’l contains an
open subset of G.

Since g is left G-invariant, it must be a multiple of the Haar measure ug of G. So if
W(C;(Br)) # 0, then

wg(PICWUND  pg(WIC;UND)

ng(W[C;(Bp)D) — ug(WIC;(Br)])
_ pICi (U]

~ ulCi(Br)] (1
Also by definition of C;(U;) and W,
1g(YIC;(UN]) = ng(g € G 1O € gWU;NF)})
= nglgeG g (O) eUinF)
= ug({lg € G1g0) eU;NF})
= (U N F). (15)

The third equality holds because 1ig is inversion invariant (i.e. G is unimodular); and the
last equality holds since w,, is the push-forward of jtg under the projection 7p: G —
H™. Similarly, ug(W[C;(Bg)]) = um(Bg N F;). Since both U; and B; are invariant
under Gy,

tnUi O F) _ wn(U))

_ ' (16)
tm(Br OV Fj)  im(Br)
Equations (14)—(16) now show
ng (WIC; (UHD )
C:(U; = C:(B S UIC AR
w(C;(U;)) w(C;(Br)) <Mg(\II[Cj(BR)])
s Hn(U; O Fj)
= u(C;(Bg)) <Mm(BR ﬂ]-}))
um(Ui)>
u( j( R)) </Lm(BR) 0

Equation (9) is now proven. Equations (10) and (11) are obvious. To prove (12) it suffices
to prove that |14, (Bg)/ i (Up) — s (Br)/tm (vp)] < &. Since v; — N5(dv;) C Uy (by
the discussion after the definition of U;), the second condition on the choice of § implies

that |:u'm(BR)//'(/m(Uj) — Mm (BR)/Mm (U/)| < é&as required'
Equation (13) is due to the fifth condition on the choice of the collection {V;}_,. 0

The following proves part of Theorem 2.

Proposition 4. For any tight radius R, with associated tight-simplex packing x, the
periodic measure [, is optimally dense.
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Proof. Theorem 1 in [Bo2] proves that the Voronoi cells in x have the highest relative
density among Voronoi cells of all packings in Sg. From this and Proposition 3 it follows
that ¢, (and x) is optimally dense. O

Propositions 1 and 3 show how the density of invariant measures can be understood
locally. By contrast, the examples of Boroczky show that there are packings whose
density cannot be well-defined from local structures.

4. Proofs of the Theorems

Proof of Theorem 1.  F is upper semicontinuous, and it is easy to construct a decreas-
ing sequence F; of continuous real-valued functions on Sk which converge pointwise
to Fo. Choose a sequence uf e MS(R) such that Dk = fSR Fodu* — D(R) as
k — o0, and, using the compactness of M (R), assume without loss of generality that
uk converges to some > € M;(R). Then fSR Fidp* — fSR Fjdp™ as k — oo, and
fs, F5dn® N\ D(u>) as j — oo. Since [¢ F; du* > D(u*) and D(u*) — D(R) as
k — oo, D(u*™) = D(R). From the Krein—-Milman theorem there exists ;i € M¢(R)
for which D(fx) = fSR Fodi > D(1®), and thus D(f1) > D(R). However, then from
the definition of D(R), D(t) = D(R).

We now show that there are optimally dense packings in the support o (it) of fi.
Choose a countable dense subset A in o (ji). Let C be the collection of all balls whose
center lies in A and whose radius is 1/n for some positive integer n. For each of the
balls ¢ € C there is a subset of o (j1), of full ft-measure, whose orbit intersects ¢, as we
see by applying Nevo’s ergodic theorem [NeS, Theorem 3] to the indicator function of
c. It follows that there is a set of full fi-measure of points, each of whose orbit intersects
every ball in C. The closure of any such orbit must therefore contain A. Since A is dense
in o ({1), any such orbit must also be dense. O

To prove Theorem 2, we use four preliminary lemmas and the following proposition,
together with the notion of the girth of a subgroup G < G, which is defined to be
infyepn infyec— () d(a, ga).

Proposition 5. IfG < G isdiscrete and cocompactand T > 0, then there exists a finite
index subgroup H < G such that H is torsion-free and the girth of H is greater than T .

Proof. This is established in the proof of Theorem 4.1 in [FKK]. |

The following result is stated, without proof, at the bottom of page 142 of [FKK],
using the following definition. A packing x is called “completely saturated” if whichever
N balls are removed from x, N + 1 may not be added to the remainder and still produce
a packing. Recall that if x is a periodic packing in S, then there is a canonical measure
iy € M;(R) whose support is equal to the orbit of x in Sg. For x € Sk, we say that the
radius of x is R and denote it by R(x) = R.
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Lemma 1. Suppose x is a periodic packing. If 11, is optimally dense, then x is com-
pletely saturated.

Proof. Suppose x is not completely saturated. Then there exists a packing x’ with the
following three properties. First, R(x") = R(x). Second, there is some g € Cy/,q ¢ C,,
and a number R such thatif ¢ € C, is not contained in the ball of radius R with center g,
then ¢ € C,. Also, conversely, if ¢ € C, and is not contained in the ball of radius R with
center ¢, then ¢ € C,. Third, the number of centers of x” contained in the ball of radius
R centered at g is greater than the number of centers of x contained in the ball of radius
R centered at g. Let Gy C T’y be a finite index subgroup of ', that is torsion-free and
has girth greater than R. Then there exists a fundamental domain F for G containing
the ball of radius R centered at g. Let x” = UgeGO g(x’ N F). Since x’ is the same as
x outside the ball of radius R centered at g, it follows that x” is a packing. Since F is a
fundamental domain for G and the relative volume of x” in F is greater than the relative
volume of x in F, it follows from Proposition 1 that w, is not optimally dense. O

Let ¢ € H™. For a € H" such that a # g and s > 0 define a,(s) to be the point on
the ray from g to a such that d(q, a,(s)) = d(q, a) + .

Lemma 2. Letqg € H". Ifa, b are any distinct points of H™ but neither equal to q and
s > 0,thend(a,b) < d(ay(s), by(s)).

Proof. Let agb denote the acute angle between ag and gb. Define a function H by
H(y, z,s) = cosh(y + s) cosh(z 4 s) — cos(agb) sinh(y + s) sinh(z + s). (18)

Then, by the law of cosines (see [Rat]), H (d(a, q), d(b, q), s) = cosh[d(a,(s), by(s))].
So it suffices to show that the derivative of H at (y, z, s) with respect to s is positive
whenever all the variables y, z and s are positive. So we compute:

dH/ds = sinh(y + s) cosh(z + s) 4+ cosh(y + s) sinh(z + s)
— cos(agb)[cosh(y + s) sinh(z + 5) + sinh(y + s) cosh(z + s)]

= (1 — cos(agb))[cosh(y + s) sinh(z + §) + sinh(y 4 5) cosh(z + )]
> 0. O (19)

Lemma 3. Suppose x is a packing for which there exists t > 0 such that the distance
between any two centers of x is greater than or equal to 2R(x) + t. Then x is not
completely saturated.

Proof. The idea behind the proof is that by moving a finite number of balls away from
apoint g ¢ C,, there will be space enough to place a new ball with center at g.
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Let k be the integer such that kt > 2R(x) > (k — 1)t and let R = k(2R (x) +1). We
define a function f on C, as follows:

(i) Ifd(c,q) > R, thenlet f(c) = ¢ = ¢,(0).
(i) Otherwise there is a j suchthat 0 < j < kand R — 2(j — D(R(x) + 1) >
d(g,c) = R —2j(R(x) + ). In this case, define f(c) = ¢, (j1).

Let C’ be the union of the point ¢ and the image of C, under f. From the definitions,
it is clear that C’ differs from C, in only a finite number of points. Hence once we show
that balls of radius R (x) centered at points of C’ do not overlap, it follows that x is not
completely saturated.

Note that if ¢ € C, and f(c) = ¢4 (jt), then

d(f(c).q) = d(cq(jb). q)

= d(c,q) +jt
> R —2j[R(x) + 1]+t
= (k— HRRG) +11. (20)

Hence if the ball of radius R (x) centered at f (c) overlaps the ball of radius R (x) centered
at g, then f(c) = c,(kt). However, this implies that d(gq, f(c)) > kt > 2R(x), a
contradiction. Hence the balls of radius R(x) centered at ¢ and f (c) do not overlap for
any c € C,.

Now assume for a contradiction that there exist two distinct centers ¢ and ¢’ in C,
with d(f(c), f(¢")) < 2R(x).If d(c,q) = Rand d(c’,q) > R, then f(c) = c and
f()=c sod(f(c), f(c')) =d(c,c’) > 2R(x), a contradiction. So we may assume
thatd(g, ¢’) < R. Suppose that f(¢) = ¢, (jt) and f(¢) = c/q (j't). Note by the distance
inequality, the assumption that d(f(c), f(c’)) < 2R(x) and the definition of f,

A

d(f(©),q) < d(f(o), f(c)+d(f(c), q)

< 2R(x)+d(c',q)+ j't
< 2R(x)+ R —2(j' — D[R(x) + ]+ j't. 21
Next by definition of R,
2R(x) + R —2(j — D[Rx) +t1+ j't =k — j +2)[2R(x) +t]. (22)

The previous equations (20)—(22) now imply that
0<(—Jj +2R2Rx) +1]. (23)
So

jl<ij+2 24)
If j =0, then j/ = 1. Otherwise d(q, ¢) < R and so, by symmetry,

j<j+2 25)
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In any case, we may assume that either j' = j or j/ = j + 1. So Lemma 2 shows that

2R(x) +1 < d(c, )

< d(cq(jb), ¢, (j1))

d(f(©), c,(jn)

d(f(0), ¢, (D) +d (e, (j'1), ¢, (jn)

d(f(0), £(c) +d(c,(j't), ¢, (jt)

< 2R(x) + 1. (26)

A

IA

This contradiction finishes the lemma. O

For a packing x, let K (x) be the m-complex underlying the Delone cell decomposition
of x. In other words, the vertex set of K (x) is equal to the set of ball centers of x, an
edge exists between vertices v and v if and only an edge of a Delone cell connects the
corresponding centers in x, and so on. Let Aut(x) denote the automorphism group of
K (x), i.e. the group of bijective maps from K (x) to K (x) that preserve its structure as
an m-complex.

Lemma 4. If xo and x| are periodic packings, K (xo) and K (x) are isomorphic as
m-complexes, and R(xo) < R(x1), then iy, is not optimally dense.

Proof. Let x, be the packing such that C,, = C,, and R(x2) = R(x¢). Intuitively, x is
formed from x; by shrinking the radius of the balls to R (x). Letr = 2R (x1) —2R(xp) >
0. By Lemma 3, x; is not completely saturated. By Lemma 1, 1, is not optimally dense.
We show that D(uy,) = D(uy,). Given this it follows that w,, is not optimally dense,
which proves the lemma.

Note that K(x;) = K(x2), so K(xo) and K (x;) are isomorphic as m-complexes.
Hence there exists a homeomorphism &: H”™ — H™ such that ¢ takes the k-cells of
K (xg) to the k-cells of K(x;) for 0 < k < m and vice versa. Note that & induces
an isomorphism ®, from Aut(xo) to Aut(x;) by ®,(a)(u) = ®ad ' (u) for any a €
Aut(x) and u € K (x3). Also there are natural (injective) inclusion homeomorphisms
ij: Ty, — Aut(x;) for j = 0, 2. Since I'y, is cocompact (for j = 0, 2), i;(I'y;) has
finite index in Aut(x;). Let I'; be a finite-index torsion-free subgroup of I'y . The group
I:IZ = O,ig(I'y) Niz(I'y,) has finite index in Aut(x,). So 1‘:10 = ®_!(H,) has finite index
in Aut(xo). So H; = ijfl (I-AIj) for j = 0, 2 has finite index in I'y,; . Note both Hy and H, are
torsion free. The Mostow Rigidity Theorem states that if the dimension of H™ is greater
than 2 and H, and H, are isomorphic, discrete, cofinite, torsion-free subgroups of G,
then any isomorphism from Hjy and H, can be realized by an isometry from H" / H; to
H™/H, (see [Kap]). In particular, H" / Hy and H" / H, have the same volume. When the
dimension of H" equals 2, the Gauss—Bonnet theorem implies that H" / Hy and H" / H,
have the same area. By the homeomorphism ®, K (xy)/Hy has the same number of
vertices as K (x;)/H;. Hence xy/ Hy has the same number of balls as x,/H,. Proposition
1 now implies that D(uy,) = D(iy,). O
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Proof of Theorem 2. Lemma 4 implies that the set of all radii that admit an optimally
dense periodic measure injects into the set of finite m-complexes (by a map that sends
Wy to K(x)/H where H is some cocompact torsion free subgroup of I'y). The later set
is countable so the first part of Theorem 2 follows immediately. The second part was
proven by Proposition 4. O

5. Conclusion

For any packing of balls of fixed radius in a Euclidean space it is possible to define an
“upper density” as the limit supremum, of the relative density of the balls in a system
of spheres expanding about any fixed point in space, as the radius of the spheres goes to
infinity. Then an optimal “packing density” can be defined as the supremum of the upper
densities of all packings [FeK], [CoS], [Rog].

As we discussed in the Introduction, the situation seems intrinsically more compli-
cated in hyperbolic space, with the example of Boroczky representing one challenge.
The definition we propose for optimally dense measures and packings circumvents some
of the difficulties of more direct approaches because the troublesome packings (like
Borozcky’s) make up a set of measure zero for every invariant measure on the space of
packings. We justify our definition of the optimal density of packings in three ways: (1)
by its relation to the limit of the density in expanding compact subregions of packings,
using the ergodic theorem of Nevo; (2) by its agreement with the average density in
Voronoi, and Delone, cells; (3) by its agreement, for periodic packings, with density in
a fundamental domain.

In more detail, each invariant probability measure 1 on the space Sy of all packings
allowed us, through Nevo’s ergodic theorem, to avoid naturally the (u-negligible) set
of packings for which density is problematic, and indeed show that over the remaining
packings the average density D(u) not only makes sense but agrees with the average
relative density with respect to Voronoi cells or Delone cells. We then defined opti-
mal density by taking the supremum over invariant measures, and proved that: for the
countable number of “tight” radii, the obvious packings, of high symmetry, are opti-
mally dense; and that for all but countably many radii, optimally dense packings must
have low symmetry. Further progress should come when the first specific example of a
low-symmetry optimum is analyzed.

For many years now there have been studies of “aperiodic tilings” in Euclidean spaces,
particularly the plane. Such tilings correspond to the situation in which one has a finite
set of polygons (or polyhedra), congruent copies of which can tile space but never by
a “periodic” tiling, that is, one with the symmetry group cocompact in the Euclidean
group [Ra2]). Generalizations to spaces other than the Euclidean plane have not been
obvious; see for instance [Ral] and [Moz].

This paper grew from an attempt to understand the significance of recent constructions
of aperiodic tilings in the hyperbolic plane; see for instance [BIW], [Moz], [MaM] and
[G] (based in part on [P]). We feel it is appropriate and useful to think of aperiodic tilings
(in Euclidean or hyperbolic space) as optimally dense packings, which led us to the above
study of the “simpler” situation of ball packings in hyperbolic space. This study suggests
that an important element in dealing with optimally dense packings, at least in hyperbolic
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space, is the use of Borel probability measures, on a relevant space of packings, invariant
under the congruence group. (Such measures have been used extensively to analyze
aperiodic tilings in Euclidean spaces [Ra2], but to study symmetry, not density.) Unlike
the situation for Euclidean space, in hyperbolic space there is a complication from the
fact that when the congruence group acts on a compact metric space (such as a special
space of packings) there may not exist an invariant probability measure on that space. (A
well known example is the natural action of PSL,(R) on the boundary of the hyperbolic
plane.) This suggests that it is inappropriate to attempt to define a density for some
packings, for instance one for which there does not exist an invariant measure on the
closure of its orbit under all rigid motions. In effect, the use of invariant measures for
defining optimal density brings with it a restriction, on the class of packings which
can be considered optimally dense, akin to the restriction of measurability shown to
be necessary, in fundamental approaches to volume using equidecomposability, by the
Banach-Tarski paradox [W].

Acknowledgment

We are very grateful to Oded Schramm for pointing us to [BeS] and its use in defining
density in the hyperbolic plane.

References

[Bea] A. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
[BeS] 1. Benjamini and O. Schramm, Percolation in the hyperbolic plane, J. Amer. Math. Soc. 14 (2001),
487-507.
[BIW] J. Block and S. Weinberger, Aperiodic tilings, scalar curvature, and amenability of spaces, J. Amer.
Math. Soc. 5 (1992), 907-918.
[Bol] K. Boroczky, Sphere packing in the hyperbolic plane (in Hungarian), Mat. Lapok 25 (1974), 265-306.
[Bo2] K. Boroczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32
(1978), 243-261.
[Bow] L. Bowen, Sphere packing in the hyperbolic plane, Math. Phys. Electron. J. 6(6) (2000), 1-10.
[CoS] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Codes, third edition, Springer-Verlag,
New York, 1999.
[Fej] L. Fejes T6th, Regular Figures, Macmillan, New York, 1964.
[FeK] G. Fejes T6th and W. Kuperberg, Packing and covering with convex sets, chapter 3.3, pp. 799-860,
in Vol B of Handbook of Convex Geometry, ed. P. Gruber and J. Wills, North-Holland, Amsterdam,
1993.
[FKK] G. Fejes Té6th, G. Kuperberg and W. Kuperberg, Highly saturated packings and reduced coverings,
Monatsh. Math. 125 (1998), 127-145.
[G] C.Goodman-Strauss, A strongly aperiodic set of tiles in the hyperbolic plane, preprint, Univ. Arkansas,
2000.
[H] T. Hales, preprints available from http: //www.math.Isa.umich.edu/hales/countdown/
[Kap] M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhduser, Boston, MA, 2001.
[Kat] S. Katok, Fuchsian Groups, University of Chicago Press, Chicago, IL, 1992.
[MaM] G.A. Margulis and S. Mozes, Aperiodic tilings of the hyperbolic plane by convex polygons, Israel J.
Math. 107 (1998), 319-332.
[Moz] S. Mozes, Aperiodic tilings, Invent. Math. 128 (1997), 603—-611.
[Ne] A. Nevo, Pointwise ergodic theorems for radial averages on simple Lie groups I, Duke Math. J. 76
(1994), 113-140.



Densest Packing of Equal Spheres in Hyperbolic Space 39

[NeS] A. Nevo and E. Stein, Analogs of Weiner’s ergodic theorems for semisimple groups, I, Ann. of Math.
145 (1997), 565-595.
[P] R. Penrose, Pentaplexy, Eureka 39 (1978), 16-22.
[Ral] C. Radin, Aperiodic tilings in higher dimensions, Proc. Amer. Math. Soc. 123 (1995), 3543-3548.
[Ra2] C. Radin, Miles of Tiles, Student Mathematical Library, Vol. 1, American Mathematical Society,
Providence, RI, 1999.
[Rat] J. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Text in Mathematics, Vol. 149, Springer-
Verlag, New York, 1994.
[RaW] C. Radin and M. Wolff, Space tilings and local isomorphism, Geom. Dedicata 42 (1992), 355-360.
[Rog] C.A.Rogers, Packing and Covering, University Press, Cambridge, 1964.
[V] E.B. Vinberg, ed., Geometry II, Encyclopedia of Mathematical Sciences, Vol. 29, Springer-Verlag,
Berlin, 1993.
[W] S. Wagon, The Banach—Tarski Paradox, Cambridge University Press, Cambridge, 1985.

Received November 15, 2000, and in revised form October 5, 2001, and April 15, 2002.
Online publication October 29, 2002.



