Skip to main content

Advertisement

Log in

Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The development of nanoparticle-based drugs has provided many opportunities to diagnose, treat and cure challenging diseases. Through the manipulation of size, morphology, surface modification, surface characteristics, and materials used, a variety of nanostructures can be developed into smart systems, encasing therapeutic and imaging agents with stealth properties. These nanostructures can deliver drugs to specific tissues or sites and provide controlled release therapy. This targeted and sustained drug delivery decreases the drug-related toxicity and increases the patient’s compliance with less frequent dosing. Nanotechnology employing nanostructures as a tool has provided advances in the diagnostic testing of diseases and cure. This technology has proven beneficial in the treatment of cancer, AIDS, and many other diseases. This review article highlights the recent advances in nanostructures and nanotechnology for drug delivery, nanomedicine and cures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khan AU, Malik N, Khan MU, Cho MH, Khan MM (2018) Fungi-assisted silver nanoparticles synthesis and their applications. Bioprocess Biosyst Engg 41:1–20

    CAS  Google Scholar 

  2. Khan AU, Khan MU, Khan MM (2019) Antifungal and antibacterial assay by silver nanoparticles synthesized from aqueous leaf extract of Trigonella foenum-graecum. BioNanoScience 9:597–602

    Google Scholar 

  3. Khan MM, Kalathil S, Lee J, Cho MH (2012) Synthesis of cysteine capped silver nanoparticles by electrochemically active biofilm and their antibacterial activities. Bull Korean Chem Soc 33(8):2592–2596

    CAS  Google Scholar 

  4. Khan MM, Cho MH (2018) Positively charged gold nanoparticles for hydrogen peroxide detection. BioNanoScience 8:537–543

    Google Scholar 

  5. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultra-sensitive nonisotopic detection. Science 281:2016–2018

    CAS  PubMed  Google Scholar 

  6. Jong WHD, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Google Scholar 

  7. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    CAS  PubMed  Google Scholar 

  8. Wickline SA, Lanza GM (2002) Molecular imaging, targeted therapeutics, and nanoscience. J Cell Biochem Suppl 39:90–97

    PubMed  Google Scholar 

  9. Nazemi A, Gillies ER (2013) Dendritic surface functionalization of nanomaterials: controlling properties and functions for biomedical applications. Braz J Pharm Sci 49:15–32

    CAS  Google Scholar 

  10. Bottari G, Urbani M, Torres T (2013) Covalent, donor–acceptor ensembles based on phthalocyanines and carbon nanostructures. Organic nanomaterials: synthesis, characterization, and device applications. Wiley, Hoboken, pp 163–186

    Google Scholar 

  11. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Google Scholar 

  12. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860

    CAS  PubMed  Google Scholar 

  13. Duran H, Steinhart M, Jr Butt H, Floudas G (2011) From heterogeneous to homogeneous nucleation of isotactic poly (propylene) confined to nanoporous alumina. Nano Lett 11(4):1671–1675

    CAS  PubMed  Google Scholar 

  14. Gupta S, Nautiyal U, Aggarwal A (2016) Nano-technology and its uses: a review. Eur J of Env Eco 3(2):55–68

    Google Scholar 

  15. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carrier for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    CAS  Google Scholar 

  16. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    CAS  PubMed  Google Scholar 

  17. Raveh A, Zukerman I, Shneck R, Avni R, Fried I (2007) Thermal stability of nanostructured superhard coatings: a review. Surf Coat Technol 201(13):6136–6142

    CAS  Google Scholar 

  18. Parveen S, Misra R, Sahoo SK (2012) ‘Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 8(2):147–166

    CAS  Google Scholar 

  19. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57(2):171–185

    CAS  PubMed  Google Scholar 

  20. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Penn SC, He I, Natan MJ (2003) Nanoparticle for bioanalysis. Curr Opin Chem Biol 7:609–615

    CAS  PubMed  Google Scholar 

  22. Gupta S, Nautiyal U, Aggarwal A (2016) Nano-technology and its uses: a review. Eur J of Environ Ecol 3(2):55–68

    Google Scholar 

  23. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  24. Muller J, Huaux F, Lison D (2006) Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon 44(6):1048–1056

    CAS  Google Scholar 

  25. Lasic DD, Papahadjopoulos D (1998) Medical applications of liposomes. Elsevier, Amsterdam

    Google Scholar 

  26. Sapra P, Allen T (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42(5):439–462

    CAS  PubMed  Google Scholar 

  27. Allen T, Chonn A (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223(1):42–46

    CAS  PubMed  Google Scholar 

  28. Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci 85(18):6949–6953

    CAS  PubMed  Google Scholar 

  29. Papahad Jopoulos D, Gabizon A (1989) Liposomes designed to avoid the reticuloendothelial system. Prog Clin Biol Res. 343:85–93

    Google Scholar 

  30. Lin H-Y, Thomas JL (2003) PEG-lipids and oligo (ethylene glycol) surfactants enhance the ultrasonic permeabilizability of liposomes. Langmuir 19(4):1098–1105

    CAS  Google Scholar 

  31. Allen T, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta (BBA)-Biomembr 1068(2):133–141

    CAS  Google Scholar 

  32. Yamazaki N, Kojima S, Yokoyama H (2005) Biomedical nanotechnology for active drug delivery systems by applying sugar-chain molecular functions. Curr Appl Phys 5(2):112–117

    Google Scholar 

  33. Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16(2):295–309

    CAS  Google Scholar 

  34. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivary systems. Phamacol Rep 64:1020–1037

    CAS  Google Scholar 

  35. Janith W, Chamindri W (2016) Applications of nanotechnology in drug delivery and design—an insight. Curr Trends Biotechnol Pharm 10(1):78–91

    Google Scholar 

  36. Thakral S, Mehta RM (2006) Fullerenes: an introduction and overview of their biological properties. Ind J Pharm Sci 68:13–19

    CAS  Google Scholar 

  37. Kratschmer W, Lamb LD, Fostiropoulos K, Hoffman DR (1990) Solid C 60: a new form of carbon. Nature 347:354–358

    Google Scholar 

  38. Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. J Chem Soc Chem Commun 20:1423–1425

    Google Scholar 

  39. Chandrakumar KR, Ghosh SK (2008) Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study. Nano Lett 8:13–19

    CAS  PubMed  Google Scholar 

  40. Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B (2006) In vitro and in vivo imaging studies of a new endohedral metallo fullerene nanoparticle. Radiology 240:756–764

    PubMed  Google Scholar 

  41. Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307:238–240

    CAS  PubMed  Google Scholar 

  42. Nikalje AP (2015) Nanotechnology and its application in medicine. Med Chem 5(2):081–089. https://doi.org/10.4172/2161-0444.1000247

    Article  CAS  Google Scholar 

  43. Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800

    CAS  PubMed  Google Scholar 

  44. Bhatia S (2016) Natural polymer drug delivery systems nanoparticles, plants, and algae. Springer, Berlin, pp 53–58

    Google Scholar 

  45. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    CAS  PubMed  Google Scholar 

  46. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long- circulating polymeric nanospheres. Science 263:1600–1603

    CAS  Google Scholar 

  47. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–394

    CAS  PubMed  Google Scholar 

  48. Sachlos E, Gotora D, Czernuszka JT (2006) Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng 12:2479–2487

    CAS  PubMed  Google Scholar 

  49. Cai S, Vijayan K, Cheng D, Lima EM, Discher DE (2007) ‘Micelles of different morphologies—advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm Res 24(11):2099–2109

    CAS  PubMed  Google Scholar 

  50. Pata V, Dan N (2003) The effect of chain length on protein solubilization in polymer-based vesicles (polymersomes). Biophys J 85(4):2111–2118

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54(1):135–147

    CAS  PubMed  Google Scholar 

  52. Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) Nanotechnology in therapeutics a focus on nanoparticles as a drug delivery system. Nanomedicine 7(8):1253–1271

    CAS  PubMed  Google Scholar 

  53. Coelho JF, Ferreira CP, Alves P, Cordeiro R, Fonseca AC, Góis JR, Gil MH (2010) Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J 1:164–209

    PubMed  PubMed Central  Google Scholar 

  54. Patel A, Cholkar K, Agrahari V, Mitra AK (2013) Ocular drug delivery systems: an overview. World J Pharmacol 2(2):47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bailey RE, Smith AM, Nie S (2004) Quantum dots in biology and medicine. Physica E 25:1–12

    CAS  Google Scholar 

  56. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultra sensitive nonisotopic detection. Science 281:2016–2018

    CAS  PubMed  Google Scholar 

  57. Vaseashta A, Dimova-Malinovska D (2005) Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mater 6:312–317

    CAS  Google Scholar 

  58. Langer R (2001) Drugs on target. Science 293:58–69

    CAS  PubMed  Google Scholar 

  59. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103:6315–6321

    CAS  PubMed  Google Scholar 

  60. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    CAS  Google Scholar 

  61. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram- negative bacteria. J Colloid Interface Sci 275:177–182

    CAS  PubMed  Google Scholar 

  62. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    CAS  PubMed  Google Scholar 

  63. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramı´rez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353

    CAS  Google Scholar 

  64. Baker C, Pradhan A, Pakstis L, Pochan DJ, Ismat SS (2005) Synthesis and antimicrobial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249

    CAS  PubMed  Google Scholar 

  65. Javed A, Oloketuyi SF, Khan MM, Khan F (2018) Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience 8(1):43–59

    Google Scholar 

  66. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    CAS  PubMed  Google Scholar 

  67. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    CAS  Google Scholar 

  68. Bruchez M, Jr Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological. Science 281:2013–2016

    CAS  PubMed  Google Scholar 

  69. Chan WC, Nie S (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 28:2013–2016

    Google Scholar 

  70. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    CAS  PubMed  Google Scholar 

  71. Sinha B, Müller RH, Möschwitzer JP (2013) Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 453(1):126–141

    CAS  PubMed  Google Scholar 

  72. Rizvi SAA, Saleh AM (2018) Applications of nanoparticles system in drug delivery technology. Saudi Pharm J 26:64–70

    PubMed  Google Scholar 

  73. Ebrahimi E, Akbarzadeh A, Abbasi E, Khandaghi AA, Abasalizadeh F, Davaran S (2016) Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000 copolymer artif cells. Nanomed Biotechnol 44(1):290–297

    CAS  Google Scholar 

  74. Cosco D, Cilurzo F, Maiuolo J, Federico C, Di Martino MT, Cristiano MC (2015) Delivery of miR-34a by chitosan/PLGA nanocomplex for the anticancer treatment of multiple myeloma. Sci Rep 1(5):17579. https://doi.org/10.1038/srep17579

    Article  CAS  Google Scholar 

  75. Vartak A, Sucheck SJ (2016) Recent advances in subunit vaccine carrier. Vaccine 4(2):12–16

    Google Scholar 

  76. Virlan MJR, Miricescu D, Totan A, Greabu M, Tanase C, Sabliov CM (2015) Current uses of poly (lactic-co-glycolic acid) in the dental field: a comprehensive review. J Chem 7:123–136

    Google Scholar 

  77. Hua S, Marks E, Schneider JJ, Keely S (2015) Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed Nanotech Biol Med 11(5):1117–1132

    CAS  Google Scholar 

  78. Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    CAS  PubMed  Google Scholar 

  79. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications. Pharmacol Ther 83:761–769

    CAS  Google Scholar 

  80. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8(24):1112–1120

    CAS  PubMed  Google Scholar 

  81. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    CAS  PubMed  Google Scholar 

  82. Shrivastava S (2008) Nanomedicines: physiological principals of distribution. DJNB 3(4):303–308

    Google Scholar 

  83. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Can Res 46(12):6387–6392

    CAS  Google Scholar 

  84. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering : from discovery to applications. Nano Lett 10:3223–3230

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shrivastava S, Dash D (2009) Applying nanotechnology to human health: revolutions in biomedical science. J Nanotech. https://doi.org/10.1155/2009/184702

    Article  Google Scholar 

  86. Marzola P (2003) In vitro and In vivo study of SLN Loaded with perparamagnetic iron oxide. J Drug Target 19–24

  87. Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13(12):1838–1845

    CAS  Google Scholar 

  88. Nishiyama N (2003) Polymeric micelle drug carrier system. Adv Exp Med Biol 519:155–177

    CAS  PubMed  Google Scholar 

  89. Quintana A, Piechler I et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted through the folate receptor. Pharma Res 19:1310–1316

    CAS  Google Scholar 

  90. Ayutlede J, Gandhi M et al (2006) Carbon nanotube reinforced bombyx morisilk nanofibres by the electrospinning process. Biomacromol 7:208–214

    Google Scholar 

  91. Allel TM (1997) Liposomes: Opportunities in drug delivery. Drugs 57:8–14

    Google Scholar 

  92. Thomas M, Kilbanov AM (2003) Conjugates to gold nanoparticles enhances polyethyenimines transfer to plasmid DNA into mammalian cells. Proc Natl Acad Sci USA 100:9138–9143

    CAS  PubMed  Google Scholar 

  93. Cherian AK, Rana AC, Jain SK (2000) Self assembled carbohydrate –stabilized ceramic nanoparticles for the parentral delivery of Insulin Drug Dev. Indian Pharma 26:459–463

    CAS  Google Scholar 

  94. Smeets RM, Dekker NH et al (2006) Dependance of Ion transport and DNA translocation through solid state nanopores. Nano-Lett 6:89–95

    CAS  PubMed  Google Scholar 

  95. Kataoka K, Harada et al (2001) Nanoelecronics. Nano Lett 519:155–177

    Google Scholar 

  96. Chan WC, Maxwell DJ et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    CAS  PubMed  Google Scholar 

  97. Donald TH (2008) Polypeptide multilayer nanofilms in drug delivery. Pharma Tech Drug Deliv. S6–S10

  98. Hedley M, Curley J, Urban R (1998) Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat Med 4:365–368

    CAS  PubMed  Google Scholar 

  99. Kreuter J (2004) Infl uence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 4:484–488

    CAS  PubMed  Google Scholar 

  100. Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139

    CAS  PubMed  Google Scholar 

  101. Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H, Suhara T (2006) Pharmaco kinetics and brain uptake of lactoferrin in rats. Life Sci 78:851–855

    CAS  PubMed  Google Scholar 

  102. Scherrmann JM, Temsamani J (2005) The use of Pep: trans vectors for the delivery of drugs into the central nervous system. Int Cong Ser 1277:199–211

    CAS  Google Scholar 

  103. Gabathuler R, Arthur G, Kennard M, Chen Q, Tsai S, Yang J, Schoorl W, Vitalis TZ, Jefferies WA (2005) Development of a potential protein vector (NeuroTrans) to deliver drugs across the blood brain barrier. Int Cong Ser 1277:171–184

    CAS  Google Scholar 

  104. Wanigasekara J, Witharana C (2016) Application of nanotechnology in drug delivery and design-an insight. Curr Trends Biotechnol Pharm 10(1):78–91

    CAS  Google Scholar 

  105. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural polymer drug delivery system. Springer, Berlin. https://doi.org/10.1007/978-3-319-41129-3_2

    Chapter  Google Scholar 

  106. Alley SC, Okeley NM, Senter PD (2010) Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14(4):529–537

    CAS  PubMed  Google Scholar 

  107. Reddy B, Yadav HK, Nagesha DK, Raizaday A, Karim A (2015) Polymeric micelles as novel carriers for poorly soluble drugs—review. J Nanosci Nanotechnol 15(6):4009–4018

    PubMed  Google Scholar 

  108. Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43

    CAS  PubMed  Google Scholar 

  109. Anupa R, Menjoge R, Kannan D, Tomalia A (2010) Dendrimer–based drug and imaging conjugates: desingn considerations for anomedical application. Drug Discov Today 15:171–185

    Google Scholar 

  110. Zhao MX, Zhu BJ (2016) The research and applications of quantum dots as nano- carriers for targeted drug delivery and cancertherapy. Nanoscale Res Lett 11(1):207. https://doi.org/10.1186/s11671-016-1394-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Martincic M, Tobias G (2015) Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv 12(4):563–581

    CAS  PubMed  Google Scholar 

  112. Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ (2010) Metallic nanoparticles: technology overview and drug delivery applications in oncology. Expert Opin Drug Deliv 7(8):927–942

    CAS  PubMed  Google Scholar 

  113. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotech Biol Med 11(2):313–327

    CAS  Google Scholar 

  114. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    CAS  PubMed  Google Scholar 

  115. Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S (2009) A magnetically-triggered composite membrane for on- demand drug delivery. Nano Lett 9(10):3651–3657

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomed Nanotech Biol Med 6(1):9–24

    CAS  Google Scholar 

  117. Rab P, Kolkowitz S, Koppens F, Harris J, Zoller P, Lukin M (2010) A quantum spins transducer based on nano electromechanical resonator arrays. Nat Phys 6(8):602–608

    Google Scholar 

  118. Chandrasekhar S, Iyer LK, Panchal JP, Topp EM, Cannon JB, Ranade VV (2013) Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opin Drug Deliv 10(8):1155–1170

    CAS  PubMed  Google Scholar 

  119. Shabnashmi PS, Kani NS, Vithya V, Lakshmi VB, Jasmine R (2016) Therapeutic applications of nanorobots- respirocytes and microbivores. J Chem Pharm Res 8(5):605–609

    CAS  Google Scholar 

  120. Hollmer M (2012) Carbon nanoparticles charge up old cancer treatment to powerful effect. Fierce Drug Deliv 8:56–63

    Google Scholar 

  121. Garde D (2012) “Chemo bomb” nanotechnology effective in halting tumors. Fierce Drug Deliv

  122. Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, Schmidt E, Hayden E, Mayer A, Keri RA, Griswold MA, Karathanasis E (2012) Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 6(5):4157–4168

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Suzanne E (2012) Bacterial 'minicells' deliver cancer drugs straight to the target. Fierce Drug Deliv. https://www.fiercepharma.com/r-d/bacterial-minicells-deliver-cancer-drugs-straight-to-target

  124. Ahmed RZ, Patil G, Zaheer Z (2013) Nanosponges—a completely new nano-horizon: pharmaceutical applications and recent advances. Drug DevInd Pharm. 39:1263–1272

    CAS  Google Scholar 

  125. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    CAS  PubMed  Google Scholar 

  126. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    CAS  PubMed  Google Scholar 

  127. Loo C, Lin A, Hirsch L, Lee MH, Barton J (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40

    CAS  PubMed  Google Scholar 

  128. Allport JR, Weissleder R (2001) In vivo imaging of gene and cell therapies. ExpHematol 29(11):1237–1246

    CAS  Google Scholar 

  129. Ballinger JR (2001) 99mTc-tetrofosmin for functional imaging of P glycoprotein modulation in vivo. J Clin Pharmacol 41:39S–47S

    CAS  PubMed  Google Scholar 

  130. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Chang Lai SP, Lee JK (2001) Paclitaxel-based chemotherapy for non–small cell lung cancer: predicting the response with 99mTc-tetrofosmin chest imaging. J Nucl Med 42(1):17–20

    CAS  PubMed  Google Scholar 

  131. Martina MS, Fortin JP, Menager C, Clement O, Barratt G, Grabielle-Madelmont C (2005) Generation of super paramagenetic liposomes revealed as highly efficient MRI contrast agent for vivo imaging. J Am Chem Soc 127(30):10676–10685

    CAS  PubMed  Google Scholar 

  132. Kuli J, Buckel T, Oldenburg J, Yuan H, Borowsky AD, Josephson L (2011) Hybrid peptide dendrimers for imaging of chemokine receptor 4 (CXCR4) expression. Mol Pharma 8(6):2444–2453

    Google Scholar 

  133. Noon WH, Kong Y, Ma J (2002) Molecular dynamics analysis of a buckyball-antibody complex. Proc Natl Acad Sci 99:6466–6470

    CAS  PubMed  Google Scholar 

  134. Torchilin VP (2000) Polymeric contrast agent for medical imaging. Curr Pharm Biotechnol 1(2):183–215

    CAS  PubMed  Google Scholar 

  135. Milroy LG, Rizzo S, Calderon A, Ellinger B, Erdmann S, Mondry J (2012) Selective chemical imagining of static action in live cells. J Am Chem Soc 134(20):8480–8486

    CAS  PubMed  Google Scholar 

  136. Kowada T, Maeda H, Kikuchi K (2015) BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem Soc Rev 44(14):4953–4972

    CAS  PubMed  Google Scholar 

  137. Wickline SA, Lanza GM (2003) Nanotechnology for molecular imaging and targeted therapy. Circulation 107(8):1092–1095

    PubMed  Google Scholar 

  138. MohsA M, Provenzale JM (2010) Applications of nanotechnology to imaging and therapy of brain tumors. Neuroimaging Clin N Am 20(3):283–292

    Google Scholar 

  139. Wang L, Zhu SJ, Wang HY, Qu SN, Zhang YL, Zhang JH (2014) Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8(3):2541–2547

    CAS  PubMed  Google Scholar 

  140. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    CAS  PubMed  Google Scholar 

  141. Shih WH, Shih WY, Li H, Schillo MC (2009) Water soluble quantum dots. Google Patents

  142. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for sunchronous cancer imaging, therapy and sensing of drug delivery based on bi-luorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    CAS  PubMed  Google Scholar 

  143. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F (2010) Cadmium-free Culn S2/ZnS quantum dots for sentinel lymh node imaging with reduced toxicity. ACS Nano 4(5):2531–2538

    CAS  PubMed  Google Scholar 

  145. Bush RM, Rechnitz G (1998) Intact chemoreceptor-based biosensors: responses and analytical limits. Biosensors 4(4):215–230

    Google Scholar 

  146. Krick L (1988) Molecular and ionic recognition by biological system. Chemical sensors. Springer, Berlin, pp 3–14

    Google Scholar 

  147. Zhang X, Guo Q, Cui D (2009) Recent advances in nanotechnology applied to biosensors. Sensors 9(2):1033–1053

    CAS  PubMed  Google Scholar 

  148. You X, He R, Gao F, Shao J, Pan B, Cui D (2007) Hydrophilic high luminescent magnetic nanocomposite. Nanotechnology 18(3):035701

    PubMed  Google Scholar 

  149. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R (2007) Dendrimer modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67(17):8156–8163

    CAS  PubMed  Google Scholar 

  150. Cui D, Tian F, Coyer SR, Wang J, Pan B, Gao F (2007) Effects of antisens-Myc-conjugated single-walled carbon Nanotubes on HL-60 cells. J Nanosci Nanotechnol 7(4–1):1639–1646

    CAS  PubMed  Google Scholar 

  151. Pan B, Cui D, Xu P, Li Q, Huang T, He R (2007) Study on interaction between gold nanorod and bovine serum, Colloids Surf A Physico chem. Eng Asp 295(1):217–222

    CAS  Google Scholar 

  152. Liang KZ, Qi JS, Mu WJ, Chen ZG (2008) Biomolecules/gold nano wiresdoped sol-gel film for label-free electrochemical immunoassay of testosterone. J Biophys Methods 70(6):1156–1162

    CAS  Google Scholar 

  153. He X, Yuan R, Chai Y, Shi Y (2008) A Sensitive amperro metric immunosensor for carcino embryonic antigen detection with porous nanogold film and nano-au/chitosan composite as immobilization matrix. J Biochem Biophys Methods 70(6):823–829

    CAS  PubMed  Google Scholar 

  154. Chai R, Yuan R, Chai R, Ou C, Cao S, Li X (2008) Ampero metric immunosensors based on layer-by-layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talenta 74(5):1330–1336

    CAS  Google Scholar 

  155. Pan B, Cui D, He R, Gao F, Zhang Y (2006) Covalent attachment of quantum dot on carbon nanotubes. ChemPhysLett 417(4):419–424

    CAS  Google Scholar 

  156. Chi D, Tian F, Kong Y, Titushikin I, Gao H (2003) Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology 15(1):154

    Google Scholar 

  157. Cui D (2007) Advances and prospects on biomolecules functionalized carbon nanotubes. J Nanosci Nanotechnol 7(4–1):1298–1314

    CAS  PubMed  Google Scholar 

  158. Li G, Xu H, Huang W, Wang Y, Wu Y, Parajuli R (2008) A pyrrolequinoline quinine glucose dehydrogenase biosensors based on screen-printed carbon paste electrodes modified by carbon nanotubes. Meas Sci Technol 19(6):065203

    Google Scholar 

  159. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Anti biofouling polymer-coated super peramagenitic iron oxide nanoparticles as potential magenetic resonance contrast against for in vivo cancer imaging. J Am Chem Soc 128(22):7383–7389

    CAS  PubMed  Google Scholar 

  160. Kim DH, Lee SH, Kim KN, Kim KM, Shim IB, Lee YK (2005) Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. J Magn Magn mater 293(1):287–292

    CAS  Google Scholar 

  161. Sincai M, Ganga D, Ganga M, Argherie D, Bica D (2005) Antitumor effects of magnetitie nanoparticles in cat mammary adenocarcinoma. J Magan Magan Mater 293(1):438–441

    CAS  Google Scholar 

  162. Ito A, Ino K, Kobayashi T, Honda H (2005) The effects of RGD peptide conjugate dmagnetic cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 26(31):6185–6193

    CAS  PubMed  Google Scholar 

  163. Guedes MHA, Sadeghiani N, Peixoto DLG, Coelho JP, Barbosa LS, Azevedo RB (2005) Effects of AC megenetic field and carboxy methyl dextran coated magnetite nanoparticles on mice peritoneal cells. J Magn Magn Mater 293(1):283–286

    CAS  Google Scholar 

  164. Rife J, Miller M, Sheehan P, Tamanaha C, Tondra M, Whitman L (2003) Design and performance of GMR esnsors for the detection of magnetic microbeads in biosensors. Sens Actuators A-Phys 107(3):209–218

    CAS  Google Scholar 

  165. Morishita N, Nakagami H, Morishita R, Takeda SI, Mishima F, Nishijima S (2005) Magnetic nanoparticles with surface modification enhanced gege delivery of HVJ-E. Biochem Biophys Res Commun. 334(4):1121–1126

    CAS  PubMed  Google Scholar 

  166. Lai GS, Zhang HL, Han DY (2008) A novel hydrogen peroxide biosensor based on haemoglobin immobilized on magnetic chitosan microspheres modified electrodes. Sens and Actuators B Chem 129(2):497–503

    CAS  Google Scholar 

  167. Cao C, Kim JH, Yoon D, Hwang ES, Kim YJ, Baik S (2008) Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes. Mater Chem Phys 112(3):738–741

    CAS  Google Scholar 

  168. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imagining. Adv Drug Deliv Res 58(14):1471–1504

    CAS  Google Scholar 

  169. Davide B, Benjamin LD, Nicolas J, Hossein S, Wu LP (2011) Nanotechnologies for Alzheimer’s disease: diagnosis, therapy and safety issues. Nano Med Nanotechnol Biol Med 7:521–540

    Google Scholar 

  170. Morishita N, Nakagami H, Morishita R, Takeda SI, Mishima F, Nishijima S (2005) Magnetic nanoparticles with surface modification enhanced gege delivery of HVJ-E. Biochem Biophys Res Commun 334(4):1121–1126

    CAS  PubMed  Google Scholar 

  171. Gul W, Wu C, Chen J, Xiao Y (2013) Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomed 8:2305–2317

    Google Scholar 

Download references

Acknowledgements

This study was supported by Priority Research Centres Program (Grant No. 2014R1A6A1031189) through the National Research Foundation of Korea (NRF) funded by The Korean Ministry of Education, South Korea. M. M. Khan would like to acknowledge the Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam for the support to complete this review article. A. U. Khan would like to thanks Jaipur National University, Jaipur, India for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mansoob Khan.

Ethics declarations

Conflict of interest

No any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.U., Khan, M., Cho, M.H. et al. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst Eng 43, 1339–1357 (2020). https://doi.org/10.1007/s00449-020-02330-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02330-8

Keywords

Navigation