Skip to main content
Log in

Role of zinc oxide nanoparticles for effluent treatment using Pseudomonas putida and Pseudomonas aureofaciens

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The biological treatment of textile effluent is enhanced by the use of zinc oxide (ZnO) nanoparticles for the reduction in chemical oxygen demand (COD) from its initial value of 1700 ppm. The present research investigated the effect of ZnO nanoparticles when microbial cultures of Pseudomonas putida and Pseudomonas aureofaciens were used to treat textile effluent in three-phase inverse fluidized bed bioreactor. The parameters like—size of ZnO nanoparticles, static bed height, superficial gas velocities and solid media particle size—together affected the COD reduction and all of these were investigated in this paper. ZnO nanoparticles of 280 nm reduced the maximum COD to 47 ppm (97.24%) at low gas velocity of 0.0027 m/s at 10% inoculum size and at a static bed height of 2.43 cm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sur DH, Mukhopadhyay M (2017) COD reduction of textile effluent in three-phase fluidized bed bioreactor using Pseudomonas aureofaciens and Escherichia coli. 3Biotech 7(141):1–11

    Google Scholar 

  2. Koshy N, Singh DN (2016) Fly ash zeolites for water treatment applications. J Environ Chem Eng 4:1460–1472

    Article  CAS  Google Scholar 

  3. Hairom NHH, Mohammad AW, Kadhum AAH (2015) Influence of zinc oxide nanoparticles in the nanofiltration of hazardous Congo red dyes. Chem Eng J 280:907–915

    Article  CAS  Google Scholar 

  4. Savage N, Mamadou SD (2005) Nanoparticles and water quality. J Nano Res 7:325–330

    Article  CAS  Google Scholar 

  5. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and application of ZnO nanowires. J Nanomater 624520:1–22

    Google Scholar 

  6. Margeta K, Logar NZ, Siljeg M, Farcas A (2012) Natural zeolites in water treatment—how effective is their use. Water Treat 2012:81–112

    Google Scholar 

  7. Qu XL, Alvarez PJJ, Li Q (2013) Application of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  8. Saliby IJ, Shon HK, Kandasamy J, Vigneswaran S (2009) Nanotechnology for wastewater treatment: in brief, water and wastewater treatment technologies (edited). Encyclop Life Supp Syst 3:1–22

    Google Scholar 

  9. Tyagi PK, Singh R, Vats S, kumar d, tyagi s (2012) Nanomaterials use in wastewater treatment. International conference on nanotechnology and chemical engineering, Thailand, pp 65–68

  10. Baruah S, Pal SK, Dutta J (2012) Anostructured zinc oxide for water treatment. Nanosci Nanotechnol Asia 2:90–102

    Article  CAS  Google Scholar 

  11. Chang JH, Chang TJ, Tung CH (2009) Performance of nano- and nonnano-catalytic electrodes for decontaminating municipal wastewater. J Hazard Mater 163:152–157

    Article  CAS  PubMed  Google Scholar 

  12. Rodea-Palomares I, Boltes K, Ferna´ndez-Pin˜as F, Legane´s F, Garcı´a-Calvo E, Santiago J, Rosal R (2011) Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci 119:135–145

    Article  CAS  PubMed  Google Scholar 

  13. Erkan A, Bakir U, Karakas G (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol 184:313–321

    Article  CAS  Google Scholar 

  14. Ibanez JA, Litter MI, Pizzaro RA (2003) Photocatalytic bactericidal effect of TiO2 on enterbacter cloacae. Comparative study with other gram –ve bacteria. J Photochem Photobiol A 157:81–85

    Article  CAS  Google Scholar 

  15. Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture. Environ Chem Lett 7:191–204

    Article  CAS  Google Scholar 

  16. Puay N, Qiu G, Ting YP (2015) Effect of zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor. J Clean Prod 88:139–145

    Article  CAS  Google Scholar 

  17. Tan M, Qiu G, Ting YP (2015) Effects of ZnO nanoparticles on wastewater treatment and their removal behavior in a membrane bioreactor. Biores Technol 185:125–133

    Article  CAS  Google Scholar 

  18. Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress Natural Sci Mater Int 22:693–700

    Article  Google Scholar 

  19. Zhang J (2011) Silver-coated zinc oxide nanoantibacterial synthesis and antibacterial activity characterization. International conference on electronics and optoelectronics (ICEOE), vol 3, Dalian, Liaoning, USA (IEEE, 2011), pp 94–98

  20. Han J, Qiu W, Gao W (2010) Potential dissolution and photodissolution of ZnO thin films. J Hazard Mater 178:115–122

    Article  CAS  PubMed  Google Scholar 

  21. Sirelkhatim A, Mahmud S, Seeni A, MaohamadKaus NH, Ann LC, Mohd.Bakhori SK, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett 7:219–242

    Article  CAS  Google Scholar 

  22. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781

    CAS  Google Scholar 

  23. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  CAS  Google Scholar 

  24. Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196

    Article  CAS  PubMed  Google Scholar 

  25. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:35–40

    Article  CAS  Google Scholar 

  27. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  PubMed  Google Scholar 

  28. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  PubMed  Google Scholar 

  29. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41:2699–2711

    Article  CAS  Google Scholar 

  30. Sur DH, Mukhopadhyay M (2017) Process aspects of three-phase inverse fluidized bed bioreactor: a review. J Environ Chem Eng 5:3518–3528

    Article  CAS  Google Scholar 

  31. Sur DH, Mukhopadhyay M (2018) Parameter estimation and optimization of COD removal of electroplating industry effluent. 3Biotech 8:84. https://doi.org/10.1007/s13205-017-1059-0

    Article  Google Scholar 

  32. Shin C, Bae J, Lee E, McCarty PL (2011) Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength fabricated wastewater. Biores Technol 102:9860–9865

    Article  CAS  Google Scholar 

  33. Farabegoli G, Chiavola A, Rolle E (2010) Decolorization of reactive Red 195 by a mixed culture in an alternating anaerobic–aerobic sequencing batch reactor. Biochem Eng J 52:220–226

    Article  CAS  Google Scholar 

  34. Zheng Y, Yu S, Shuai S, Zhou Q (2013) Color removal and COD reduction of biologically treated textile effluent through submerged filtration using hollow fiber nanofiltration membrane. Desalination 314:89–95

    Article  CAS  Google Scholar 

  35. ConceiÒ«ão V, Freire FB, Carvalho KQ (2013) Treatment of textile effluent containing indigo blue dye by a UASB reactor coupled with pottery clay adsorption. Acta Sci 35:53–58

    Google Scholar 

  36. Su CC, Pukdee-Asa M, Ratanatamskul C (2011) Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination 278:211–218

    Article  CAS  Google Scholar 

  37. Agarry SE, Ajani AO (2011) Evaluation of microbial systems for biotreatment of textile waste effluent in Nigeria: biodecolourization and Biodegradation of textile dye. J Appl Sci Environ Manag 15:79–86

    CAS  Google Scholar 

  38. Baban A, Yediler A, Avaz G (2010) Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors. Biores Technol 101:1147–1152

    Article  CAS  Google Scholar 

  39. Haribabu K, Sivasubramanian V (2014) Treatment of wastewater in fluidized bed bioreactor using low density biosupport. Energy Procedia 50:214–221

    Article  CAS  Google Scholar 

  40. Sokol W (2012) Optimal aerations in the inverse fluidized bed biofilm reactor when used in treatment of industrial wastewaters of various strength. Adv Chem Eng Sci 2:384–391

    Article  CAS  Google Scholar 

  41. Sokol W, Woldeyes B (2011) Evaluation of the inverse fluidized bed biological reactor for treating high-strength industrial wastewaters. Adv Chem Eng Sci 1:239–244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. Dharmesh H Sur acknowledges the help provided by Dr. Jaysukh Marakana and Mr. Chirag Savaliya of Department of Nanotechnology, V V P Engineering College, Rajkot. The author remains grateful for the support provided by the management of V V P Engineering College, Rajkot, Gujarat (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Mukhopadhyay.

Ethics declarations

Conflict of interest

This manuscript is the authors’ original work and has not been published nor has it been submitted simultaneously elsewhere. All authors have checked the manuscript and have agreed to the submission.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3260 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, D.H., Mukhopadhyay, M. Role of zinc oxide nanoparticles for effluent treatment using Pseudomonas putida and Pseudomonas aureofaciens. Bioprocess Biosyst Eng 42, 187–198 (2019). https://doi.org/10.1007/s00449-018-2024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2024-y

Keywords

Navigation