Skip to main content
Log in

Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work describes potential opportunities for utilization of agro-industrial residues to produce green biodegradable plastics of poly(3-hydroxybutyrate) (PHB). Wheat straws were examined with good efficacy of carbon substrates using Cupriavidus necator. Production was examined in separate hydrolysis and fermentation (SHF) in the presence and absence of WS hydrolysis enzymes, and in simultaneous saccharification and fermentation (SSF) with enzymes. Results showed that production of PHB in SSF was more efficient in terms of viable cell count, cell dry weight, and PHB production and yield compared to those of SHF and glucose-control cultures. While glucose control experiment produced 4.6 g/L PHB; SSF produced 10.0 g/L compared to 7.1 g/L in SHF when utilizing enzymes during WS hydrolysis. Results showed that most of sugars produced during the hydrolysis were consumed in SHF (~98 %) compared to 89.2 % in SSF. Results also demonstrated that a combination of glucose and xylose can compensate for the excess carbon required for enhancing PHB production by C. necator. However, higher concentration of sugars at the beginning of fermentation in SHF can lead to cell inhibition and consequently catabolite repressions. Accordingly, results demonstrated that the gradual release of sugars in SSF enhanced PHB production. Moreover, the presence of sugars other than glucose and xylose can eliminate PHB degradation in medium of low carbon substrate concentrations in SSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steinbuchel A (2001) Macromol Biosci 1:1–24

    Article  CAS  Google Scholar 

  2. Baei MS, Najafpour GD, Younesi H, Tabandeh F, Eisazadeh H (2009) World Appl Sci J 7:157–161

    Google Scholar 

  3. Tokiwa Y, Ugwu CU (2007) J Biotechnol 132:264–272

    Article  CAS  Google Scholar 

  4. Tokiwa Y, Calabia BP (2008) Can J Chem 86:548–555

    Article  CAS  Google Scholar 

  5. Nishida H, Tokiwa Y (1993) J Environ Polym Degrad 1:227–233

    Article  CAS  Google Scholar 

  6. Nishida H, Tokiwa Y (1993) J Polym Degrad 1:65–80

    Article  CAS  Google Scholar 

  7. Gao HJ, Wu Q, Chen GQ (2002) Microbiol Lett 213:59–65

    CAS  Google Scholar 

  8. Ugwu CU, Tokiwa Y, Ichiba T (2011) Bioresour Technol 102:6766–6768

    Article  CAS  Google Scholar 

  9. Tsuge T (2002) J Biosci Bioeng 94:579–584

    CAS  Google Scholar 

  10. Khanna S, Srivastava AK (2005) Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  11. Bernd HE, Kunze C, Freier T, Sternberg K, Kramer S, Behrend D, Prall F, Donat M, Kramp B (2009) Acta Otolaryngol 129:1010–1017

    Article  Google Scholar 

  12. Bucci DZ, Tavares LB, Sell I (2007) Polym Test 26:908–915

    Article  CAS  Google Scholar 

  13. Cheng C, Chung Him Y, Yin Chung C, Peter HF, Man Ken C (2006) Biomaterials 27:4804–4814

    Article  Google Scholar 

  14. Castilho L, Mitchel D, Freire D (2009) Bioresour Technol 100:5996–6009

    Article  CAS  Google Scholar 

  15. Rusendi D, Sheppard J (1995) Bioresour Technol 54:191–196

    Article  CAS  Google Scholar 

  16. Oliviera F, Dias M, Castilho L, Friere D (2007) Biosour Technol 98:633–638

    Article  Google Scholar 

  17. FAOSTAT (2011) Production-Crops, 2010 data, Food and Agriculture Organization of the United Nations

  18. Ortiz R, Sayre K, Govaerts B, Gupta R, Subbarao G, Ban T, Hodson D, Dixon J, Ivan Ortiz-Monasterio J, Reynolds M (2008) Agric Ecosyst Environ 126:46–58

    Article  Google Scholar 

  19. Qureshi N, Saha B, Hector R, Hughes S, Cotta M (2008) Biomass Bioenergy 32:168–175

    Article  CAS  Google Scholar 

  20. Dahman Y, Jayasuriya KE, Kalis M (2010) Appl Biochem Biotechnol 162:1647–1659

    Article  CAS  Google Scholar 

  21. Qureshi N, Ezeji T (2008) Biofuels Bioprod Biorefin 2:319–330

    Article  CAS  Google Scholar 

  22. Saha B, Nichols N, Cotta M (2011) Bioresour Technol 102:10892–10897

    Article  CAS  Google Scholar 

  23. Harper S, Lynch J (1981) J Sci Food Agric 32:1057–1062

    Article  CAS  Google Scholar 

  24. Al-Abdallah W, Dahman Y (2013) J Chem Technol Biot 36:1735–1743

    Google Scholar 

  25. Zabihi S, Alinia R, Esmaeilzadeh F, Kalajahi J (2010) Biosyst Eng 105:288–297

    Article  Google Scholar 

  26. Karimi K, Emtiazi G, Taherzadeh MJ (2006) Microb Technol 40:138–144

    Article  CAS  Google Scholar 

  27. Marzialetti T, Olarte MB, Sievers C (2008) Ind Eng Chem Res 47:7131–7140

    Article  CAS  Google Scholar 

  28. Chang VS, Nagwani M, Kim CH (2001) Appl Biochem Biotechnol 94:1–28

    Article  CAS  Google Scholar 

  29. Silverstein R, Chen Y, Sharma-Shivappa R (2007) Bioresour Technol 98:3000–3011

    Article  CAS  Google Scholar 

  30. Chaijamrus S, Udpuay N (2008) CIGR J 10:1–11

    Google Scholar 

  31. Page WJ, Knosp O (1989) Appl Environ Microbiol 55:1334–1339

    CAS  Google Scholar 

  32. Hori K, Kaneko M, Tanji Y, Xing XH, Unno H (2002) Appl Microbiol Biotechnol 59:211–216

    Article  CAS  Google Scholar 

  33. Kim B, Lee S, Lee S, Chang H, Chang Y, Woo S (1994) Biotechnol Bioeng 43:892–898

    Article  CAS  Google Scholar 

  34. Hahn S, Chang Y, Lee S (1995) Appl Environ Microbiol 61:34–39

    CAS  Google Scholar 

  35. Metabolix I, Tepha I (2003) Chem Biol 10:893–894

    Google Scholar 

  36. Lee SY, Lee Y, Wang F (1999) Biotechnol Bioeng 65:363–368

    Article  CAS  Google Scholar 

  37. Ugwu C, Tokiwa Y, Aoyagi H (2012) J Polym Environ 20:254–257

    Article  CAS  Google Scholar 

  38. Thirmal C, Dahman Y (2012) Can J Chem Eng 90:745–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge financial support from Agriculture and Agri-Food Canada, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Faculty of Engineering and Architectural Science at Ryerson University in Toronto, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Dahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahman, Y., Ugwu, C.U. Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues. Bioprocess Biosyst Eng 37, 1561–1568 (2014). https://doi.org/10.1007/s00449-014-1128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1128-2

Keywords

Navigation