Skip to main content
Log in

High-rate partial nitritation using porous poly(vinyl alcohol) sponge

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol) (PVA) has been utilized as a support material for the immobilization of nitrifying bacteria without the comprehensive survey of partial nitritation. In the present study, the activities of nitrifiers and the maximum nitrogen conversion rate of partial nitritation with PVA sponge-cubes were specified according to different conditions. The selective enrichment of ammonia-oxidizing bacteria (AOB) on PVA sponge-cubes was achieved by the competition between AOB and nitrite-oxidizing bacteria for dissolved oxygen. The efficiency of ammonia oxidation was proportional to the concentration of HCO3 with the molar ratio of HCO3 -C/NH4 +-N = 1.91 and a half of the ratio was applied to the further experiments to ensure stable partial nitritation. The maximum nitrogen conversion rate of partial nitritation was dependent on the volume, not the size of sponge-cubes. The partial nitritation showed the superior rate performance of 3.09 kg N/m3 day with the packing ratio of 32 % of 5 × 5 × 5 mm3 PVA sponge-cubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abeling U, Seyfried CF (1992) Anaerobic-aerobic treatment of high-strength ammonium wastewater nitrogen removal via nitrite. Water Sci Technol 26(5–6):1007–1015

    CAS  Google Scholar 

  2. Surmacz-Gorska J, Cichon A, Miksch K (1997) Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification. Water Sci Technol 36(10):73–78

    Article  CAS  Google Scholar 

  3. Jetten MS, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M (2001) Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Curr Opin Biotechnol 12(3):283–288

    Article  CAS  Google Scholar 

  4. Sinha B, Annachhatre AP (2007) Partial nitrification-operational parameters and microorganisms involved. Rev Environ Sci Biotechnol 6(4):285–313

    Article  CAS  Google Scholar 

  5. Biesterfeld S, Farmer G, Russell P, Figueroa L (2003) Effect of alkalinity type and concentration on nitrifying biofilm activity. Water Environ Res 75(3):196–204

    Article  CAS  Google Scholar 

  6. Whang LM, Yang KH, Yang YF, Han YL, Chen YJ, Cheng SS (2009) Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na2CO3 addition. Water Sci Technol 59(2):223–231

    Article  CAS  Google Scholar 

  7. Bassin JP, Dezotti M, Sant’Anna GL Jr (2011) Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor. J Hazard Mater 185(1):242–248

    Article  CAS  Google Scholar 

  8. Rouse JD, Yazaki D, Cheng Y-J, Koyama T, Furukawa K (2004) Swim-bed technology as an innovative attached-growth process for high-rate wastewater treatment. Jpn J Water Treat Biol 40(3):155–224

    Article  Google Scholar 

  9. Rusten B, Eikebrokk B, Ulgenes Y, Lygren E (2006) Design and operations of the Kaldnes moving bed biofilm reactors. Aquacult Eng 34(3):322–331

    Article  Google Scholar 

  10. Cao G, Zhao Q, Sun X, Zhang T (2002) Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells. Enzyme Microb Technol 30(1):49–55

    Article  CAS  Google Scholar 

  11. Chung J, Bae W, Lee YW, Rittmann BE (2007) Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors. Process Biochem 42(3):320–328

    Article  CAS  Google Scholar 

  12. Bai X, Ye Z, Li Y, Zhou L, Yang L (2010) Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms. Process Biochem 45(1):60–66

    Article  CAS  Google Scholar 

  13. Lim JW, Seng CE, Lim PE, Ng SL, Sujari AN (2011) Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials. Bioresour Technol 102(21):9876–9883

    Article  CAS  Google Scholar 

  14. Tawfik A, Ohashi A, Harada H (2010) Effect of sponge volume on the performance of down-flow hanging sponge system treating UASB reactor effluent. Bioprocess Biosyst Eng 33(7):779–785

    Article  CAS  Google Scholar 

  15. Nguyen TT, Ngo HH, Guo W, Johnston A, Listowski A (2010) Effects of sponge size and type on the performance of an up-flow sponge bioreactor in primary treated sewage effluent treatment. Bioresour Technol 101(5):1416–1420

    Article  CAS  Google Scholar 

  16. van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142(8):2187–2196

    Article  Google Scholar 

  17. Liang Z, Han Z, Yang S, Liang X, Du P, Liu G, Yang Y (2011) A control strategy of partial nitritation in a fixed bed biofilm reactor. Bioresour Technol 102(2):710–715

    Article  CAS  Google Scholar 

  18. Tarre S, Green M (2004) High-rate nitrification at low pH in suspended-and attached-biomass reactors. Appl Environ Microbiol 70(11):6481–6487

    Article  CAS  Google Scholar 

  19. Guisasola A, Petzet S, Baeza JA, Carrera J, Lafuente J (2007) Inorganic carbon limitations on nitrification: experimental assessment and modeling. Water Res 41(2):277–286

    Article  CAS  Google Scholar 

  20. Obaja D, Macé S, Costa J, Sans C, Mata-Alvarez J (2003) Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresour Technol 87(1):103–111

    Article  CAS  Google Scholar 

  21. Lopez A, Pagano M, Volpe A, Di Pinto AC (2004) Fenton’s pre-treatment of mature landfill leachate. Chemosphere 54(7):1005–1010

    Article  CAS  Google Scholar 

  22. Kang KH, Shin HS, Park H (2002) Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res 36(16):4023–4032

    Article  CAS  Google Scholar 

  23. Zhao X, Wang Y, Ye Z, Borthwick AGL, Ni J (2006) Oil field wastewater treatment in biological aerated filter by immobilized microorganisms. Process Biochem 41(7):1475–1483

    Article  CAS  Google Scholar 

  24. Araki N, Ohashi A, Machdar I, Harada H (1999) Behaviors of nitrifiers in a novel biofilm reactor employing hanging sponge-cubes as attachment site. Water Sci Technol 39(7):23–31

    Article  CAS  Google Scholar 

  25. Zhang L, Yang J, Furukawa K (2010) Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox. J Biosci Bioeng 110(4):441–448

    Article  CAS  Google Scholar 

  26. Qiao S, Matsumoto N, Shinohara T, Nishiyama T, Fujii T, Bhatti Z, Furukawa K (2010) High-rate partial nitrification performance of high ammonium containing wastewater under low temperatures. Bioresour Technol 101(1):111–117

    Article  CAS  Google Scholar 

  27. Yang J, Zhang L, Daisuke H, Takahiro S, Ma Y, Li Z, Furukawa K (2010) High rate partial nitrification treatment of reject wastewater. J Biosci Bioeng 110(4):436–440

    Article  CAS  Google Scholar 

  28. Isaka K, Itokawa H, Kimura Y, Noto K, Murakami T (2011) Novel autotrophic nitrogen removal system using gel entrapment technology. Bioresour Technol 102(17):7720–7726

    Article  CAS  Google Scholar 

  29. Okabe S, Oshiki M, Takahashi Y, Satoh H (2011) Development of long-term stable partial nitrification and subsequent anammox process. Bioresour Technol 102(13):6801–6807

    Article  CAS  Google Scholar 

  30. Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM, Heijnen JJ (1988) The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol 37(9):135–142

    Article  Google Scholar 

  31. Knowles G, Downing AL, Barrett MJ (1965) Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. Microbiology 38(2):263–278

    CAS  Google Scholar 

  32. Guo W, Ngo HH, Dharmawan F, Palmer CG (2010) Roles of polyurethane foam in aerobic moving and fixed bed bioreactors. Bioresour Technol 101(5):1435–1439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the Korea Institute of Science and Technology (Project No. 2Z03740).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Je Yoo or Seockheon Lee.

Additional information

Y. J. Yoo equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, H., Yang, H., Chung, YC. et al. High-rate partial nitritation using porous poly(vinyl alcohol) sponge. Bioprocess Biosyst Eng 37, 1115–1125 (2014). https://doi.org/10.1007/s00449-013-1083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1083-3

Keywords

Navigation