Skip to main content
Log in

The synergistic effect on production of lignin-modifying enzymes through submerged co-cultivation of Phlebia radiata, Dichomitus squalens and Ceriporiopsis subvermispora using agricultural residues

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The lignin-modifying enzymes (LMEs) play an important role in decomposition of agricultural residues, which contain a certain amount of lignin. In this study, the production of LMEs by three co-cultivated combinations of Phlebia radiata, Dichomitus squalens and Ceriporiopsis subvermispora and the respective monocultures was comparatively investigated. Laccase and manganese peroxidases (MnP) were significantly promoted in the co-culture of P. radiata and D. squalens, and corncob was verified to be beneficial for laccase and MnP production. Moreover, laccase production by co-culture of P. radiata and D. squalens with high ratio of glucose to nitrogen was higher than low ratio under carbon- and nitrogen-meager conditions. New laccase isoenzymes measured by Native-PAGE were stimulated by co-cultured P. radiata with D. squalens or C. subvermispora, respectively, growing in the defined medium containing corncob, but the expression of laccase was greatly restrained by the co-culturing of D. squalens with C. subvermispora. This study showed that the synergistic and depressing effects of co-cultivation of P. radiata, D. squalens and C. subvermispora on LMEs were species specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LMEs:

Lignin-modifying enzymes

MnP:

Manganese peroxidases

LiP:

Lignin peroxidase

VP:

Versatile peroxidase

ABTS:

2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt

VA:

Veratryl alcohol

PR:

Phlebia radiata

DS:

Dichomitus squalens

CS:

Ceriporiopsis subvermispora

PDA:

Potato dextrose agar

DNS:

3,5-Dinitrosalicylic acid

Native-PAGE:

Native polyacrylamide gel electrophoresis

References

  1. Roncero MB, Torres AL, Colom JF, Vidal T (2003) TCF bleaching of wheat straw pulp using ozone and xylanase. Part A: paper quality assessment. Bioresour Technol 87:305–314

    Article  CAS  Google Scholar 

  2. Jeffries TW (1990) Biodegradation of lignin–carbohydrate complexes. Biodegrad 1:163–176

    Article  CAS  Google Scholar 

  3. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    Article  CAS  Google Scholar 

  4. Higuchi T (2006) Look back over the studies of lignin biochemistry. J Wood Sci 52:2–8

    Article  CAS  Google Scholar 

  5. Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MD, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. PNAS 105:12932–12937

    Article  CAS  Google Scholar 

  6. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  CAS  Google Scholar 

  7. Hatakka A (1994) Lignin-modifying enzymes from selected white rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  8. Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20

    Article  CAS  Google Scholar 

  9. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599

    Article  CAS  Google Scholar 

  10. Hu HL, van den Brink J, Gruben BS, Wösten HAB, Gu JD, de Vries RP (2011) Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int Biodeterior Biodegrad 65:248–252

    Article  CAS  Google Scholar 

  11. Chi YJ, Hatakka A, Maijala P (2007) Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? Int Biodeterior Biodegrad 59:32–39

    Article  CAS  Google Scholar 

  12. Chen QH, Sven K, Thomas H, Steffen R, Susanne Z (2011) Co-cultured production of lignin-modifying enzymes with white-rot fungi. Appl Biochem Biotechnol 165:700–718

    Article  CAS  Google Scholar 

  13. Velazquez-Cedẽno MA, Farnet AM, Ferré E, Savoie JM (2004) Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw. Mycologia 96:712–719

    Article  Google Scholar 

  14. Zhang H, Hong YZ, Xiao YZ, Yuan J, Tu XM, Zhang XQ (2006) Efficient production of laccases by Trametes sp. AH28–2 in cocultivation with a Trichoderma strain. Appl Microbiol Biotechnol 73:89–94

    Article  CAS  Google Scholar 

  15. Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulase on sugarcane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol Lett 19:665–667

    Article  CAS  Google Scholar 

  16. Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IS, Yaropolov AI (2002) Production of lignin modifying enzymes by co-cultivated white-rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzym Microbiol Technol 30:573–580

    Article  CAS  Google Scholar 

  17. Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white-rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    CAS  Google Scholar 

  18. Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RE (1986) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzym Microbiol Technol 8:27–32

    Article  CAS  Google Scholar 

  19. Paszczynski A, Crawford RL, Huynh VB (1988) Manganese peroxidase of Phanerochaete chrysosporium: purification. In: Wood WA, Kellogg ST (eds) Methods in Enzymology. Academic Press, New York

    Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  21. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  22. Dorado J, Almendros G, Camarero S, Martínez AT, Vares T, Hatakka A (1999) Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzym Microbiol Technol 25:605–612

    Article  CAS  Google Scholar 

  23. Li A, Antizar-Ladislao B, Khraisheh M (2007) Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst Eng 30:189–196

    Article  Google Scholar 

  24. Song C, Hu H, Zhu S, Wang G, Chen G (2004) Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuels 18:90–96

    Article  CAS  Google Scholar 

  25. Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenerg 31:250–254

    Article  CAS  Google Scholar 

  26. Vaughan T, Seo CW, Marshall WE (2001) Removal of selected metal ions from aqueous solution using modified corncobs. Bioresour Technol 78:133–139

    Article  CAS  Google Scholar 

  27. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    CAS  Google Scholar 

  28. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  Google Scholar 

  29. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  Google Scholar 

  30. Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl Environ Microbiol 61:3515–3520

    CAS  Google Scholar 

  31. Elisashvili V, Kachlishvili E (2009) Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J Biotehnol 144:37–42

    Article  CAS  Google Scholar 

  32. Tekere M, Zvauya R, Read JS (2001) Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. J Basic Microbiol 41:115–129

    Article  CAS  Google Scholar 

  33. Šušla M, Novotný C, Svobodová K (2007) The implication of Dichomitus squalens laccase isoenzymes in dye decolorization by immobilized fungal cultures. Bioresour Technol 98:2109–2115

    Article  Google Scholar 

  34. Garcia TA, Santiago MF, Ulhoa CJ (2007) Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatography. Appl Microbiol Biotechnol 75:311–318

    Article  CAS  Google Scholar 

  35. Fonseca MI, Shimizu E, Zapata PD, Villalba LL (2010) Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzym Microbiol Technol 46:534–539

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of Zhejiang Province, China (Y3090026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-He Chen.

Additional information

The authors Y.-C. Dong and W. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, YC., Wang, W., Hu, ZC. et al. The synergistic effect on production of lignin-modifying enzymes through submerged co-cultivation of Phlebia radiata, Dichomitus squalens and Ceriporiopsis subvermispora using agricultural residues. Bioprocess Biosyst Eng 35, 751–760 (2012). https://doi.org/10.1007/s00449-011-0655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0655-3

Keywords

Navigation