Skip to main content

Advertisement

Log in

Stratum corneum proteases and dry skin conditions

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

This paper reviews the role of stratum corneum (SC) proteases and their inhibitors in normal and xerotic skin conditions. The importance of the corneodesmosome for SC integrity is also discussed, and the effect of proteases on its disassembly. The relevance of each enzyme class is outlined, as well as their potential inhibitors. It is becoming much clearer, however, that the LEKTI family of inhibitors are critical for SC enzyme control. Delayed desquamation is the accumulation of corneocytes on the surface of the SC that leads ultimately to the cosmetic condition commonly termed as “dry skin”. The reductions of serine protease activity are a consistent theme in dry skin, and non-eczematous atopic dermatitis otherwise known as atopic xerosis leading to retention hyperkeratosis. Flaky skin is normally seen on the body whereas a rough skin is observed on the face. Increased protease activity occurs in most, if not all, inflammatory dermatoses, ranging from the genetic disorders, psoriasis and eczematous atopic dermatitis to sub-clinical barrier abnormalities induced by surfactants or by environmental influences as a result of premature desquamation. In some of these conditions a thinner SC is apparent, e.g., eczematous atopic skin or on photodamaged facial skin. A better understanding of the proteolytic events and of the regulatory mechanisms involved in desquamation should enable the design of new treatments for skin disorders associated with faulty desquamation. This new knowledge will be an important basis for new developments in ‘corneotherapy’ and ‘corneocare’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A2ML1:

α2-macroglobulin-like-1

AD:

Atopic dermatitis

CE:

Cornified envelope

CDSN:

Corneodesmosin

CTSD:

Cathepsin D

CTSL2:

Cathepsin L2 = cathepsin V = stratum corneum thiol protease = SCTP

CTSL-like:

Cathepsin L-like

DSC:

Desmocollin

DSG:

Desmoglein

Elafin:

Skin-derived-antileukoprotease = SKALP

KLK:

Kallikrein

KLK5:

Stratum corneum trypsin-like enzyme = SCTE

KLK7:

Stratum corneum chymotrypsin-like enzyme = SCCE

LB:

Lamellar body (?)

LEKTI-1:

Lymphoepithelial Kazal-type 5 serine protease inhibitor

LEKTI-2:

Lymphoepithelial Kazal-type 9 serine protease inhibitor

LEKTI-3:

Lymphoepithelial Kazal-type 6 serine protease inhibitor

PAI-2:

Plasminogen activator inhibitor-2 = SERPINB2

SC:

Stratum corneum

SG:

Stratum granulosum

SLPI:

Secretory leukocyte protease inhibitor = antileukoprotease (ALP)

SPINK5:

Serine protease inhibitor Kazal-type 5 gene

SPINK6:

Serine protease inhibitor Kazal-type 6 gene

SPINK9:

Serine protease inhibitor Kazal-type 9 gene

TEWL:

Transepidermal water loss

TJ:

Tight junction

uPA:

Urokinase = urokinase type plasminogen activator

uPAR:

Urokinase-type plasminogen activator receptor

References

  • Alfano D, Franco P, Vocca I, Gambi N, Pisa V, Mancini A, Caputi M, Carriero MV, Iaccarino I, Stoppelli MP (2005) The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis. Thromb Haemost 93:205–211

    PubMed  CAS  Google Scholar 

  • Alibardi L, Dockal M, Reinisch C, Tschachler E, Eckhart L (2004) Ultrastructural localization of caspase-14 in human epidermis. J Histochem Cytochem 52:1561–1574

    PubMed  CAS  Google Scholar 

  • Baek JH, Lee MY, Koh JS (2011) Relationship between clinical features of facial dry skin and biophysical parameters in Asians. Int J Cosmet Sci 33:222–227

    PubMed  CAS  Google Scholar 

  • Bernard D, Mehul B, Thomas-Collignon A, Simonetti L, Remy V, Bernard MA, Schmidt R (2003) Analysis of proteins with caseinolytic activity in a human stratum corneum extract revealed a yet unidentified cysteine protease and identified the so-called "stratum corneum thiol protease" as cathepsin L2. J Invest Dermatol 120:592–600

    PubMed  CAS  Google Scholar 

  • Bernard D, Mehul B, Thomas-Collignon A, Delattre C, Donovan M, Schmidt R (2005) Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis. J Invest Dermatol 125:278–287

    PubMed  CAS  Google Scholar 

  • Bissett DL, McBride JF, Patrick LF (1987) Role of protein and calcium in stratum corneum cell cohesion. Arch Dermatol Res 279:184–189

    PubMed  CAS  Google Scholar 

  • Borgono CA, Michael IP, Shaw JL, Luo LY, Ghosh MC, Soosaipillai A, Grass L, Katsaros D, Diamandis EP (2007a) Expression and functional characterization of the cancer-related serine protease, human tissue kallikrein 14. J Biol Chem 282:2405–2422

    PubMed  CAS  Google Scholar 

  • Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, Sotiropoulou G, Diamandis EP (2007b) A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 282:3640–3652

    PubMed  CAS  Google Scholar 

  • Brandner JM, Haftek M, Niessen CM (2010) Adherens junctions, desmosomes and tight junctions in epidermal barrier function. The Open Dermatology Journal 4:14–20

    CAS  Google Scholar 

  • Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T (2005) A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 124:198–203

    PubMed  CAS  Google Scholar 

  • Brattsand M, Stefansson K, Hubiche T, Nilsson SK, Egelrud T (2009) SPINK9: a selective, skin-specific Kazal-type serine protease inhibitor. J Invest Dermatol 129:1656–1665

    PubMed  CAS  Google Scholar 

  • Byrne AJ (2010) Bioengineering and subjective approaches to the clinical evaluation of dry skin. Int J Cosmet Sci 32:410–421

    Google Scholar 

  • Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, Egelrud T, Simon M, Serre G (2004) Degradation of corneodesmosome proteins by two serine proteases of the Kallikrein Family, SCTE//KLK5//hK5 and SCCE//KLK7//hK7. J Invest Dermatol 122:1235–1244

    PubMed  CAS  Google Scholar 

  • Chang-Yi C, Takahashi M, Tezuka T (1997) 30-kDa trypsin-like proteases in the plantar stratum corneum. J Dermatol 24:504–509

    CAS  Google Scholar 

  • Chapman SJ, Walsh A (1990) Desmosomes, corneosomes and desquamation. An ultrastructural study of adult pig epidermis. Arch Dermatol Res 282:304–310

    PubMed  CAS  Google Scholar 

  • Chapman SJ, Walsh A, Jackson SM, Friedmann PS (1991) Lipids, proteins and corneocyte adhesion. Arch Dermatol Res 283:167–173

    PubMed  CAS  Google Scholar 

  • Choi MJ, Maibach HI (2005) Role of ceramides in barrier function of healthy and diseased skin. Am J Clin Dermatol 6:215–223

    PubMed  Google Scholar 

  • Clements JA, Willemsen NM, Myers SA, Dong Y (2004) The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Crit Rev Clin Lab Sci 41:265–312

    PubMed  CAS  Google Scholar 

  • Debela M, Goettig P, Magdolen V, Huber R, Schechter NM, Bode W (2007a) Structural basis of the zinc inhibition of human tissue Kallikrein 5. J Mol Biol 373:1017–1031

    PubMed  CAS  Google Scholar 

  • Debela M, Hess P, Magdolen V, Schechter NM, Steiner T, Huber R, Bode W, Goettig P (2007b) Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc Natl Acad Sci U S A 104:16086–16091

    PubMed  CAS  Google Scholar 

  • Debela M, Beaufort N, Magdolen V, Schechter NM, Craik CS, Schmitt M, Bode W, Goettig P (2008) Structures and specificity of the human kallikrein-related peptidases KLK 4, 5, 6, and 7. Biol Chem 389:623

    PubMed  CAS  Google Scholar 

  • Declercq L, Muizzuddin N, Hellemans L, Van Overloop L, Sparacio R, Marenus K, Maes D (2002) Adaptation response in human skin barrier to a hot and dry environment. J Invest Derm 119:716

    Google Scholar 

  • Denda M, Kitamura K, Elias PM, Feingold KK (1997) trans-4-(Aminomethyl)cyclohexane Carboxylic Acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol 109:84–90

    PubMed  CAS  Google Scholar 

  • Denda M, Sato J, Masuda Y, Tsuchiya T, Koyama J, Kuramoto M, Elias PM, Feingold KR (1998) Exposure to a dry environment enhances epidermal permeability barrier function. J Invest Dermatol 111(5):858–863

    Google Scholar 

  • Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, Wagberg F, Brattsand M, Hachem JP, Leonardsson G, Hovnanian A (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18:3607–3619

    PubMed  CAS  Google Scholar 

  • Descargues P, Deraison C, Prost C, Fraitag S, Mazereeuw-Hautier J, D’Alessio M, Ishida-Yamamoto A, Bodemer C, Zambruno G, Hovnanian A (2006) Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in netherton syndrome. J Invest Dermatol 126:1622–1632

    PubMed  CAS  Google Scholar 

  • Egelrud T (1999) Desquamation. In: Loden M, Maibach H (eds) Dry skin and moisturizers. CRC Press, Boca Raton, pp 109–117

    Google Scholar 

  • Egelrud T, Lundström A (1990) The dependence of detergent-induced cell dissociation in non-palmo-plantar stratum corneum on endogenous proteolysis. J Invest Dermatol 95:456–459

    PubMed  CAS  Google Scholar 

  • Egelrud T, Lundström A (1991) A chymotrypsin-like proteinase that may be involved in desquamation in plantar stratum corneum. Arch Dermatol Res 283:108–112

    PubMed  CAS  Google Scholar 

  • Egelrud T, Hofer PA, Lundström A (1988) Proteolytic degradation of desmosomes in plantar stratum corneum leads to cell dissociation in vitro. Acta Derm Venereol 68:93–97

    PubMed  CAS  Google Scholar 

  • Eissa A, Diamandis EP (2008) Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol Chem 389:669–680

    PubMed  CAS  Google Scholar 

  • Ekholm E, Egelrud T (1999) Stratum corneum chymotryptic enzyme in psoriasis. Arch Dermatol Res 291:195–200

    PubMed  CAS  Google Scholar 

  • Ekholm E, Brattsand M, Egelrud T (2000) Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J Invest Dermatol 114:56–63

    PubMed  CAS  Google Scholar 

  • Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80(Suppl):44s–49s

    CAS  Google Scholar 

  • Emami N, Diamandis EP (2007) Human tissue kallikreins: a road under construction. Clinica Chimica Acta 381:78–84

    CAS  Google Scholar 

  • Fartasch M, Bassukas ID, Diepgen TL (1993) Structural relationship between epidermal lipid lamellae, lamellar bodies and desmosomes in human epidermis: an ultrastructural study. Br J Dermatol 128:1–9

    PubMed  CAS  Google Scholar 

  • Franzke C-W, Baici A, Bartels J, Christophers E, Wiedow O (1996) Antileukoprotease inhibits stratum corneum chymotryptic enzyme. Evidence for a regulative function in desquamation. Journal of Biological Chememistry 271:21886–21890

    CAS  Google Scholar 

  • Galliano MF, Toulza E, Gallinaro H, Jonca N, Ishida-Yamamoto A, Serre G, Guerrin M (2006) A novel protease inhibitor of the alpha2-macroglobulin family expressed in the human epidermis. J Biol Chem 281:5780–5789

    PubMed  CAS  Google Scholar 

  • Garrod D, Chidgey M, North A (1996) Desmosomes: differentiation, development, dynamics and disease. Curr Opin Cell Biol 8:670–678

    PubMed  CAS  Google Scholar 

  • Goettig P, Magdolen V, Brandstetter H (2010) Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 92:1546–1567

    PubMed  CAS  Google Scholar 

  • Green KJ, Gaudry CA (2000) Are desmosomes more than tethers for intermediate filaments? Nat Rev Mol Cell Biol 1:208–216

    PubMed  CAS  Google Scholar 

  • Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Invest Dermatol 127:2499–2515

    PubMed  CAS  Google Scholar 

  • Guillou S, Ghabri S, Jannot C, Gaillard E, Lamour I, Boisnic S (2011) The moisturizing effect of a wheat extract food supplement on women’s skin: a randomized, double-blind placebo-controlled trial. Int J Cosmet Sci 33:138–143

    PubMed  CAS  Google Scholar 

  • Gunathilake R, Schurer NY, Shoo BA, Celli A, Hachem JP, Crumrine D, Sirimanna G, Feingold KR, Mauro TM, Elias PM (2009) pH-regulated mechanisms account for pigment-type differences in epidermal barrier function. J Invest Dermatol 129:1719–1729

    PubMed  CAS  Google Scholar 

  • Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V, Roseeuw D, Feingold KR, Elias PM (2005) Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 125:510–520

    PubMed  CAS  Google Scholar 

  • Hachem J-P, Houben E, Crumrine D, Man M-Q, Schurer N, Roelandt T, Choi EH, Uchida Y, Brown BE, Feingold KR, Elias PM (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 126:2074–2086

    PubMed  CAS  Google Scholar 

  • Haftek M, Simon M, Serre G (2006) Corneodesmosomes: pivotal actors in the stratum corneum cohesion and desquamation. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor & Francis, New York, pp 171–189

    Google Scholar 

  • Harding CR, Watkinson A, Rawlings AV, Scott IR (2000) Dry skin, moisturization and corneodesmolysis. Int J Cosmet Sci 22:21–52

    PubMed  CAS  Google Scholar 

  • Harding CR, Long S, Richardson J, Rogers J, Zhang Z, Bush A, Rawlings AV (2003) The cornified cell envelope: an important marker of stratum corneum maturation in healthy and dry skin. Int J Cosmet Sci 25:157–167

    PubMed  CAS  Google Scholar 

  • Harper JI, Godwin H, Green A, Wilkes LE, Holden NJ, Moffatt M, Cookson WO, Layton G, Chandler S (2010) A study of matrix metalloproteinase expression and activity in atopic dermatitis using a novel skin wash sampling assay for functional biomarker analysis. Br J Dermatol 162:397–403

    PubMed  CAS  Google Scholar 

  • Hibino T, Matsuda Y, Takahashi T, Goetinck PF (1999) Suppression of keratinocyte proliferation by plasminogen activator inhibitor-2. J Invest Dermatol 112:85–90

    PubMed  CAS  Google Scholar 

  • Hikima R, Igarashi S, Ikeda N, Matsumoto M, Hanyama A, Egawa Y, Horikoshi T, Hayashi S (2004) Development of lip treatment on the basis of desquamation mechanism. IFSCC Mag 7:3–9

    Google Scholar 

  • Holleran WM, Takagi Y, Uchida Y (2006) Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 580:5456–5466

    PubMed  CAS  Google Scholar 

  • Horikoshi T, Igarashi S, Uchiwa H, Brysk MM (1999) Role of endogenous cathepsin D-like and chymotrypsin-like proteolysis in human epidermal desquamation. Br J Dermatol 141:453–459

    PubMed  CAS  Google Scholar 

  • Igarashi S, Takizawa T, Takizawa T, Yasuda Y, Uchiwa H, Hayashi S, Brysk H, Robinson JM, Yamamoto K, Brysk MM, Horikoshi T (2004) Cathepsin D, but not cathepsin E, degrades desmosomes during epidermal desquamation. Br J Dermatol 151:355–361

    PubMed  CAS  Google Scholar 

  • Ishida-Yamamoto A, Deraison C, Bonnart C, Bitoun E, Robinson R, O’Brien TJ, Wakamatsu K, Ohtsubo S, Takahashi H, Hashimoto Y, Dopping-Hepenstal PJ, McGrath JA, Iizuka H, Richard G, Hovnanian A (2005) LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J Invest Dermatol 124:360–366

    PubMed  CAS  Google Scholar 

  • Katagiri C, Sato J, Nomura J, Denda M (2003) Changes in environmental humidity affect the water-holding property of the stratum corneum and its free amino acid content, and the expression of filaggrin in the epidermis of hairless mice. J Dermatol Sci 31:29–35

    Google Scholar 

  • Katsuta Y, Yoshida Y, Kawai E, Kohno Y, Kitamura K (2003) Urokinase-type plasminogen activator is activated in stratum corneum after barrier disruption. J Dermatol Sci 32:55–57

    PubMed  CAS  Google Scholar 

  • Kawai E, Kohno Y, Ogawa K, Sakuma K, Yoshikawa N, Aso D (2002) Can inorganic powders provide any biological benefit in stratum corneum, while residing on skin surface. IFSCC Mag 5:269–275

    Google Scholar 

  • Kikuchi K, Kobayashi H, O’goshi K-I, Tagami H (2006) Impairment of skin barrier function is not inherent in atopic dermatitis patients: a prospective study conducted in newborns. Pediatr Dermatol 23:109–113

    PubMed  Google Scholar 

  • Kishibe M, Bando Y, Terayama R, Namikawa K, Takahashi H, Hashimoto Y, Ishida-Yamamoto A, Jiang Y-P, Mitrovic B, Perez D, Iizuka H, Yoshida S (2007) Kallikrein 8 is involved in skin desquamation in cooperation with other kallikreins. J Biol Chem 282:5834–5841

    PubMed  CAS  Google Scholar 

  • Kitamura K (2002) Advances in dry skin care technology extend beyond the category of cosmetic products. IFSCC Mag 5:177–187

    Google Scholar 

  • Kligman AM (2011) Corneobiology and corneotherapy—a final chapter. Int J Cosmet Sci 33:197–209

    PubMed  CAS  Google Scholar 

  • Komatsu N, Saijoh K, Sidiropoulos M, Tsai B, Levesque MA, Elliott MB, Takehara K, Diamandis EP (2005a) Quantification of human tissue kallikreins in the stratum corneum: dependence on age and gender. J Invest Dermatol 125:1182–1189

    PubMed  CAS  Google Scholar 

  • Komatsu N, Saijoh K, Toyama T, Ohka R, Otsuki N, Hussack G, Takehara K, Diamandis EP (2005b) Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br J Dermatol 153:274–281

    PubMed  CAS  Google Scholar 

  • Komatsu N, Tsai B, Sidiropoulos M, Saijoh K, Levesque MA, Takehara K, Diamandis EP (2006) Quantification of eight tissue kallikreins in the stratum corneum and sweat. J Invest Dermatol 126:927–931

    Google Scholar 

  • Komatsu N, Saijoh K, Kuk C, Shirasaki F, Takehara K, Diamandis EP (2007a) Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy. Br J Dermatol 156:875–883

    PubMed  CAS  Google Scholar 

  • Komatsu N, Saijoh K, Kuk C, Liu AC, Khan S, Shirasaki F, Takehara K, Diamandis EP (2007b) Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol 16:513–519

    PubMed  CAS  Google Scholar 

  • Kottke MD, Delva E, Kowalczyk AP (2006) The desmosome: cell science lessons from human diseases. J Cell Sci 119:797–806

    PubMed  CAS  Google Scholar 

  • Koyama J, Nakanishi J, Masuda Y, Sato J, Nomura J, Suzuki Y and Nakayama Y (1996) The mechanism of desquamation in the stratum corneum and its relevance to skin care. Proceedings of the 19th IFSCC Congress

  • Lian X, Yang T (2004) Plasminogen activator inhibitor 2: expression and role in differentiation of epidermal keratinocyte. Biol Cell 96:109–116

    PubMed  CAS  Google Scholar 

  • Lundström A, Egelrud T (1988) Cell shedding from human plantar skin in vitro: evidence of its dependence on endogenous proteolysis. J Invest Dermatol 91:340–343

    PubMed  Google Scholar 

  • Lundström A, Egelrud T (1990a) Evidence that cell shedding from plantar stratum corneum in vitro involves endogenous proteolysis of the desmosomal protein desmoglein I. J Invest Dermatol 94:216–220

    PubMed  Google Scholar 

  • Lundström A, Egelrud T (1990b) Cell shedding from human plantar skin in vitro: evidence that two different types of protein structures are degraded by a chymotrypsin-like enzyme. Arch Dermatol Res 282:234–237

    PubMed  Google Scholar 

  • Lundström A, Egelrud T (1991) Stratum corneum chymotryptic enzyme: a proteinase which may be generally present in the stratum corneum and with a possible involvement in desquamation. Acta Derm Venereol 71:471–474

    PubMed  Google Scholar 

  • Lundström A, Serre G, Haftek M, Egelrud T (1994) Evidence for a role of corneodesmosin, a protein which may serve to modify desmosomes during cornification, in stratum corneum cell cohesion and desquamation. Arch Dermatol Res 286:369–375

    PubMed  Google Scholar 

  • Matsui T, Miyamoto K, Kubo A, Kawasaki H, Ebihara T, Hata K, Tanahashi S, Ichinose S, Imoto I, Inazawa J, Kudoh J, Amagai M (2011) SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO Mol Med 3:320–333

    Google Scholar 

  • McMillan JR, Haftek M, Akiyama M, South AP, Perrot H, McGrath JA, Eady RA and Shimizu H (2003) Alterations in desmosome size and number coincide with the loss of keratinocyte cohesion in skin with homozygous and heterozygous defects in the desmosomal protein plakophilin 1. J Invest Dermatol 121:96–103

    Google Scholar 

  • Meyer-Hoffert U (2009) Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp (Warsz) 57:345–354

    CAS  Google Scholar 

  • Meyer-Hoffert U, Wu Z, Schroder JM (2009) Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4:e4372

    PubMed  Google Scholar 

  • Meyer-Hoffert U, Wu Z, Kantyka T, Fischer J, Latendorf T, Hansmann B, Bartels J, He Y, Glaser R, Schroder JM (2010) Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J Biol Chem 285:32174–32181

    PubMed  CAS  Google Scholar 

  • Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug permeation through human skin: theory and invitro experimental measurement. AICHE J 21:985–996

    CAS  Google Scholar 

  • Mohammed D, Matts PJ, Hadgraft J, Lane ME (2011) Depth profiling of stratum corneum biophysical and molecular properties. Br J Dermatol 164:957–965

    PubMed  CAS  Google Scholar 

  • Molhuizen HO, Alkemade HA, Zeeuwen PL, de Jongh GJ, Wieringa B, Schalkwijk J (1993) SKALP/elafin: an elastase inhibitor from cultured human keratinocytes. Purification, cDNA sequence, and evidence for transglutaminase cross-linking. J Biol Chem 268:12028–12032

    PubMed  CAS  Google Scholar 

  • Mondino A, Resnati M, Blasi F (1999) Structure and function of the urokinase receptor. Thromb Haemost 82(Suppl 1):19–22

    PubMed  Google Scholar 

  • Muizzuddin N, Hellemans L, Van Overloop L, Corstjens H, Declercq L, Maes D (2010) Structural and functional differences in barrier properties of African American, Caucasian and East Asian skin. J Dermatol Sci 59:123–128

    PubMed  CAS  Google Scholar 

  • Neubert RHH, Wepf R (2008) Das Stratum corneum: Struktur und Morphologie einer hoch effizienten Barriere. Medicos 4:21–28

    Google Scholar 

  • Nin M, Katoh N, Kokura S, Handa O, Yoshikawa T, Kishimoto S (2009) Dichotomous effect of ultraviolet B on the expression of corneodesmosomal enzymes in human epidermal keratinocytes. J Dermatol Sci 54(1):17–24

    PubMed  CAS  Google Scholar 

  • Ogura Y, Matsunaga Y, Nishiyama T, Amano S (2008) Plasmin induces degradation and dysfunction of laminin 332 (laminin 5) and impaired assembly of basement membrane at the dermal–epidermal junction. Br J Dermatol 159:49–60

    PubMed  CAS  Google Scholar 

  • Oji V, Oji ME, Adamini N, Walker T, Aufenvenne K, Raghunath M, Traupe H (2006) Plasminogen activator inhibitor-2 is expressed in different types of congenital ichthyosis: in vivo evidence for its cross-linking into the cornified cell envelope by transglutaminase-1. Br J Dermatol 154:860–867

    PubMed  CAS  Google Scholar 

  • Paliouras M, Diamandis EP (2006) The kallikrein world: an update on the human tissue kallikreins. Biol Chem 387:643–652

    PubMed  CAS  Google Scholar 

  • Rawlings AV (2006) Ethnic skin types: are there differences in skin structure and function? Int J Cosmet Sci 28:79–83

    PubMed  CAS  Google Scholar 

  • Rawlings AV (2009) 50 years of stratum corneum and moisturization research. IFSCC Mag 12(3):169–172

    Google Scholar 

  • Rawlings AV (2010) Recent advances in skin barrier research. J Pharm Pharmacol 62:671–677

    PubMed  CAS  Google Scholar 

  • Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124:1099–1110

    PubMed  CAS  Google Scholar 

  • Rawlings AV, Watkinson A, Rogers J, Mayo A, Hope J, Scott IR (1994) Abnormalities in stratum corneum structure, lipid composition, and desmosome degradation in soap-induced winter xerosis. J Soc Cosmet Chem 45:203–220

    CAS  Google Scholar 

  • Rawlings AV, Harding C, Watkinson A, Banks J, Ackerman C, Sabin R (1995) The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res 287:457–464

    PubMed  CAS  Google Scholar 

  • Redoules D, Tarroux R, Assalit MF, Peri JJ (1999) Characterisation and assay of five enzymatic activities in the stratum corneum using tape-strippings. Skin Pharmacol Appl Skin Physiol 12:182–192

    PubMed  CAS  Google Scholar 

  • Rockway TW, Nienaber V, Giranda VL (2002) Inhibitors of the protease domain of urokinase-type plasminogen activator. Curr Pharm Des 8:2541–2558

    PubMed  CAS  Google Scholar 

  • Roedl D, Traidl-Hoffmann C, Ring J, Behrendt H, Braun-Falco M (2009) Serine protease inhibitor lymphoepithelial Kazal type-related inhibitor tends to be decreased in atopic dermatitis. J Eur Acad Dermatol Venereol 23:1263–1266

    PubMed  CAS  Google Scholar 

  • Roelandt T, Thys B, Heughebaert C, De Vroede A, De Paepe K, Roseeuw D, Rombaut B, Hachem JP (2009) LEKTI-1 in sickness and in health. Int J Cosmet Sci 31:247–254

    PubMed  CAS  Google Scholar 

  • Rogers J, Harding C, Mayo A, Banks J, Rawlings A (1996) Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res 288:765–770

    Google Scholar 

  • Rosenberg S (2001) New developments in the urokinase-type plasminogen activator system. Expert Opin Ther Targets 5:711–722

    PubMed  CAS  Google Scholar 

  • Sato J, Denda M, Nakanishi J, Nomura J, Koyama J (1998) Cholesterol sulfate inhibits proteases that are involved in desquamation of stratum corneum. J Invest Dermatol 111:189–193

    Google Scholar 

  • Sato J, Katagiri C, Nomura J, Denda M (2001) Drastic decrease in environmental humidity decreases water-holding capacity and free amino acid content of the stratum corneum. Arch Dermatol Res 293:477–480

    Google Scholar 

  • Sato J (2002) Desquamation and the Role of Stratum Corneum Enzymes. In: Leyden JJ and Rawlings AV (eds) Skin Moisturization, vol 25. Cosmetic Science and Technology Series. Marcel Dekker, New York, pp 81–94

  • Schechter NM, Choi E-J, Wang Z-M, Hanakawa Y, Stanley JR, Ya K, Clayman GL, Jayakumar A (2005) Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem 386:1173–1184

    PubMed  CAS  Google Scholar 

  • Schepky AG, Holtzmann U, Siegner R, Zirpins S, Schmucker R, Wenck H, Wittern KP, Biel SS (2004) Influence of cleansing on stratum corneum tryptic enzyme in human skin. Int J Cosmet Sci 26:245–253

    PubMed  CAS  Google Scholar 

  • Serre G, Mils V, Haftek M, Vincent C, Croute F, Reano A, Ouhayoun JP, Bettinger S, Soleilhavoup JP (1991) Identification of late differentiation antigens of human cornified epithelia, expressed in re-organized desmosomes and bound to cross-linked envelope. J Invest Dermatol 97:1061–1072

    PubMed  CAS  Google Scholar 

  • Simon M, Jonca N, Guerrin M, Haftek M, Bernard D, Caubet C, Egelrud T, Schmidt R, Serre G (2001a) Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J Biol Chem 276:20292–20299

    PubMed  CAS  Google Scholar 

  • Simon M, Bernard D, Minondo A-M, Camus C, Fiat F, Corcuff P, Schmidt R, Serre G (2001b) Persistence of both peripheral and non-peripheral corneodesmosomes in the upper stratum corneum of winter xerosis skin versus only peripheral in normal skin. J Invest Dermatol 116:23–30

    PubMed  CAS  Google Scholar 

  • Simon M, Tazi-Ahnini R, Cork MJ, Serre G (2002) Abnormal proteolysis of corneodesmosin in psoriatic skin. Br J Dermatol 147:1053

    Google Scholar 

  • Simon M, Tazi-Ahnini R, Jonca N, Caubet C, Cork MJ, Serre G (2008) Alterations in the desquamation-related proteolytic cleavage of corneodesmosin and other corneodesmosomal proteins in psoriatic lesional epidermis. Br J Dermatol 159:77–85

    PubMed  CAS  Google Scholar 

  • Skerrow CJ, Clelland DG, Skerrow D (1989) Changes to desmosomal antigens and lectin-binding sites during differentiation in normal human epidermis: a quantitative ultrastructural study. J Cell Sci 92:667–677

    PubMed  Google Scholar 

  • Spiers EM, Lazarus GS, Lyons-Giordano B (1994) Expression of plasminogen activator enzymes in psoriatic epidermis. J Invest Dermatol 102:333–338

    PubMed  CAS  Google Scholar 

  • Stefansson K, Brattsand M, Ny A, Glas B, Egelrud T (2006) Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum. Biol Chem 387:761–768

    PubMed  CAS  Google Scholar 

  • Stokes DL (2007) Desmosomes from a structural perspective. Curr Opin Cell Biol 19:565–571

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Nomura J, Hori J, Koyama J, Takahashi M, Horii I (1993) Detection and characterization of endogenous protease associated with desquamation of stratum corneum. Arch Dermatol Res 285:372–377

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Koyama J, Moro O, Horii I, Kikuchi K, Tanida M, Tagami H (1996) The role of two endogenous proteases of the stratum corneum in degradation of desmoglein-1 and their reduced activity in the skin of ichthyotic patients. Br J Dermatol 134:460–464

    PubMed  CAS  Google Scholar 

  • Taggart CC, Lowe GJ, Greene CM, Mulgrew AT, O’Neill SJ, Levine RL, McElvaney NG (2001) Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J Biol Chem 276:33345–33352

    PubMed  CAS  Google Scholar 

  • Takada K, Amano S, Kohno Y, Nishiyama T, Inomata S (2006) Non-invasive study of gelatinases in sun exposed and unexposed healthy human skin based on measurements in stratum corneum. Arch Dermatol Res 298:237–242

    PubMed  CAS  Google Scholar 

  • Tian X, Shigemasa K, Hirate E, Gu L, Uebaba Y, Nagain O, O’Brien TJ, Ohama K (2004) Expression of human kallikrein 7 (hK7/SCCE) and its inhibitor antileukoprotease (ALP/SLPI) in uterine endocervical glands and in cervical adenocarcinomas. Oncology Reports 12:1001–1006

    PubMed  CAS  Google Scholar 

  • Van Overloop L, Declercq L, Maes D (2001) Visual scaling of human skin correlates to decreased ceramide levels and decreased stratum corneum protease activity. J Invest Dermatol vol 117, p 811

  • Vasilopoulos Y, Cork MJ, Murphy R, Williams HC, Robinson DA, Duff GW, Ward SJ, Tazi-Ahnini R (2004) Genetic association between an AACC insertion in the 3'UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Derm 123:62–66

    PubMed  CAS  Google Scholar 

  • Voegeli R, Rawlings AV, Doppler S, Heiland J, Schreier T (2007) Profiling of serine protease activities in human stratum corneum and detection of a stratum corneum tryptase-like enzyme. Int J Cosmet Sci 29:191–200

    PubMed  CAS  Google Scholar 

  • Voegeli R, Rawlings AV, Doppler S, Schreier T (2008) Increased basal transepidermal water loss leads to elevation of some but not all stratum corneum serine proteases. Int J Cosmet Sci 30:435–442

    PubMed  CAS  Google Scholar 

  • Voegeli R, Rawlings AV, Breternitz M, Doppler S, Schreier T, Fluhr JW (2009) Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol 161:70–77

    PubMed  CAS  Google Scholar 

  • Voegeli R, Doppler S, Joller P, Breternitz M, Fluhr J, Rawlings AV (2011) Increased mass levels of serine proteases in the stratum corneum in acute eczematous atopic skin. Int J Cosmet Sci 33:560–565

    PubMed  CAS  Google Scholar 

  • Watkinson A (1999) Stratum corneum thiol protease (SCTP): a novel cysteine protease of late epidermal differentiation. Arch Dermatol Res 291:260–268

    PubMed  CAS  Google Scholar 

  • Wepf R, Richter T, Biel S, Schlüter H, Fischer F, Wittern KP, Hohenberg H (2007) Multimodal imaging of skin structures: imagining imaging of the skin. In: Wilhelm KP, Elsner P, Berardesca E, Maibach HI (eds) Bioengineering of the skin: skin imaging and analysis. Informa Healthcare, New York

    Google Scholar 

  • Yamaguchi M, Tahara Y, Makino T, Shimizu T, Date A (2009) Comparison of cathepsin L activity in cheek and forearm stratum corneum in young female adults. Skin Res Technol 15:370–375

    Google Scholar 

  • Yoon H, Laxmikanthan G, Lee J, Blaber SI, Rodriguez A, Kogot JM, Scarisbrick IA, Blaber M (2007) Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J Biol Chem 282:31852–31864

    PubMed  CAS  Google Scholar 

  • Yoon H, Blaber SI, Evans DM, Trim J, Juliano MA, Scarisbrick I, Blaber M (2008) Activation profiles of human kallikrein-related peptidases by proteases of the thrombostasis axis. Protein Sci 17:1998–2007

    PubMed  CAS  Google Scholar 

  • Zeeuwen PL, Ishida-Yamamoto A, van Vlijmen-Willems IM, Cheng T, Bergers M, Iizuka H, Schalkwijk J (2007) Colocalization of cystatin M/E and cathepsin V in lamellar granules and corneodesmosomes suggests a functional role in epidermal differentiation. J Invest Dermatol 127:120–128

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony V. Rawlings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawlings, A.V., Voegeli, R. Stratum corneum proteases and dry skin conditions. Cell Tissue Res 351, 217–235 (2013). https://doi.org/10.1007/s00441-012-1501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1501-x

Keywords

Navigation