Skip to main content

Advertisement

Log in

Stem cell-based tissue engineering in veterinary orthopaedics

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Regenerative medicine is one of the most intensively researched medical branches, with enormous progress every year. When it comes to translating research from bench to bedside, many of the pioneering innovations are achieved by cooperating teams of human and veterinary medical scientists. The veterinary profession has an important role to play in this new and evolving technology, holding a great scientific potential, because animals serve widely as models for human medicine and results obtained from animals may serve as preclinical results for human medicine. Regenerative veterinary medicine utilizing mesenchymal stromal cells (MSC) for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. As orthopaedic disorders represent a major part of all cases in veterinary clinical practice, it is not surprising that they are currently taking a leading role in MSC therapies. Therefore, the purpose of this paper is to give an overview on past and current achievements as well as future perspectives in stem cell-based tissue engineering in veterinary orthopaedics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14:1307–1314

    Article  PubMed  Google Scholar 

  • Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthr Cartil 17:705–713

    Article  PubMed  CAS  Google Scholar 

  • Arden N, Nevitt MC (2006) Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol 20:3–25

    Article  PubMed  Google Scholar 

  • Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85-A:1927–1935

    PubMed  Google Scholar 

  • Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF (2007) Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 68:1095–1105

    Article  PubMed  CAS  Google Scholar 

  • Awad HA, Butler DL, Harris MT, Ibrahim RE, Wu Y, Young RG, Kadiyala S, Boivin GP (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res 51:233–240

    Article  PubMed  CAS  Google Scholar 

  • Banos CC, Thomas AH, Kuo CK (2008) Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today 84:228–244

    Article  PubMed  CAS  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  PubMed  CAS  Google Scholar 

  • Berg L, Koch T, Heerkens T, Bessonov K, Thomsen P, Betts D (2009) Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood. Vet Comp Orthop Traumatol 22:363–370

    PubMed  CAS  Google Scholar 

  • Black LL, Gaynor J, Gahring D, Adams C, Aron D, Harman S, Gingerich DA, Harman R (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther 8:272–284

    PubMed  Google Scholar 

  • Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 9:192–200

    PubMed  Google Scholar 

  • Boyan BD, Caplan AI, Heckman JD, Lennon DP, Ehler W, Schwartz Z (1999) Osteochondral progenitor cells in acute and chronic canine nonunions. J Orthop Res 17:246–255

    Article  PubMed  CAS  Google Scholar 

  • Braun J, Hack A, Weis-Klemm M, Conrad S, Treml S, Kohler K, Walliser U, Skutella T, Aicher WK (2010) Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells. Am J Vet Res 71:1228–1236

    Article  PubMed  Google Scholar 

  • Brodke D, Pedrozo HA, Kapur TA, Attawia M, Kraus KH, Holy CE, Kadiyala S, Bruder SP (2006) Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res 24:857–866

    Article  PubMed  Google Scholar 

  • Burk J, Brehm W (2011) Stammzellentherapie von Sehnenverletzungen - klinische Ergebnisse von 98 Fällen. Pferdeheilkunde 27:153–161

    Google Scholar 

  • Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, Awad H (2008) Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 26:1–9

    Article  PubMed  Google Scholar 

  • Byeon YE, Ryu HH, Park SS, Koyama Y, Kikuchi M, Kim WH, Kang KS, Kweon OK (2010) Paracrine effect of canine allogenic umbilical cord blood-derived mesenchymal stromal cells mixed with beta-tricalcium phosphate on bone regeneration in ectopic implantations. Cytotherapy 12:626–636

    Article  PubMed  CAS  Google Scholar 

  • Cao FJ, Feng SQ (2009) Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury. Chin Med J (Engl) 122:225–231

    Google Scholar 

  • Carrade DD, Owens SD, Galuppo LD, Vidal MA, Ferraro GL, Librach F, Buerchler S, Friedman MS, Walker NJ, Borjesson DL (2011) Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses. Cytotherapy 13:419–430

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Ende N (2000) The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med 31:21–30

    PubMed  CAS  Google Scholar 

  • Chen J, Lu Z, Chen D, Peng S, Wang H (2011) Isolation and characteriziation of porcine amniotic fluid-derived multipotent stem cells. PLoS One 6:e19964

    Article  PubMed  CAS  Google Scholar 

  • Chong AK, Ang AD, Goh JC, Hui JH, Lim AY, Lee EH, Lim BH (2007) Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg Am 89:74–81

    Article  PubMed  Google Scholar 

  • Chong AK, Chang J, Go JC (2009) Mesenchymal stem cells and tendon healing. Front Biosci 14:4598–4605

    Article  PubMed  CAS  Google Scholar 

  • Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C, Lazzari G (2009) Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Vet Res Commun 33:811–821

    Article  PubMed  Google Scholar 

  • Corradetti B, Lange-Consiglio A, Barucca M, Cremonesi F, Bizzaro D (2011) Size-sieved subpopulations of mesenchymal stem cells from intervascular and perivascular equine umbilical cord matrix. Cell Prolif. doi:10.1111/j.1365-2184.2011.00759.x [Epub ahead of print]

  • Crovace A (2009) Experimental & clinical application of BMSCs for the treatment of large bone defects in animals. Regen Med 4(Suppl 2):12–13

    Google Scholar 

  • Crovace A, Lacitignola L, De SR, Rossi G, Francioso E (2007) Cell therapy for tendon repair in horses: an experimental study. Vet Res Commun 31(Suppl 1):281–283

    Article  PubMed  Google Scholar 

  • Crovace A, Lacitignola L, Rossi G, Francioso E (2010) Histological and immunohistochemical evaluation of autologous cultured bone marrow mesenchymal stem cells and bone marrow mononucleated cells in collagenase-induced tendinitis of equine superficial digital flexor tendon. Vet Med Int 2010:250978

    PubMed  Google Scholar 

  • da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  CAS  Google Scholar 

  • Dahlgren LA (2009) Fat-derived mesenchymal stem cells for equine tendon repair. Regen Med 4(Suppl 2):13

    Google Scholar 

  • Dalstra JA, Kunst AE, Borrell C, Breeze E, Cambois E, Costa G, Geurts JJ, Lahelma E, Van OH, Rasmussen NK, Regidor E, Spadea T, Mackenbach JP (2005) Socioeconomic differences in the prevalence of common chronic diseases: an overview of eight European countries. Int J Epidemiol 34:316–326

    Article  PubMed  CAS  Google Scholar 

  • Dander E, Lucchini G, Vinci P, Introna M, Bonanomi S, Balduzzi A, Gaipa G, Perseghin P, Masciocchi F, Capelli C, Golay J, Algarotti A, Rambaldi A, Rovelli A, Biondi A, Biagi E, D'Amico G (2011) Immunomonitoring of transplanted patients infused with mesenchymal stromal cells (MSC) for treating steroid refractory GVDH. Biol Blood Marrow Transplant 17:162–163

    Article  Google Scholar 

  • Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS, Dinh DH (2007) Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 24:391–410

    Article  PubMed  Google Scholar 

  • Del Bue M, Ricco S, Ramoni R, Conti V, Gnudi G, Grolli S (2008) Equine adipose-tissue derived mesenchymal stem cells and platelet concentrates: their association in vitro and in vivo. Vet Res Commun 32(Suppl 1):S51–S55

    Article  PubMed  Google Scholar 

  • Devitt CM (2009) Clinical use of bone marrow-derived mesenchymal stem cells in dogs. Proceedings of the American College of Vet Surgeons Symposium 2009, Washington DC, p 961

  • Di NM, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  Google Scholar 

  • Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Donadeu X, Breton A, Diaz C (2009) Transgene-induced reprogramming of equine fibroblasts. Regen Med 4(Suppl 2):14

    Google Scholar 

  • Dowling BA, Dart AJ, Hodgson DR, Smith RK (2000) Superficial digital flexor tendonitis in the horse. Equine Vet J 32:369–378

    Article  PubMed  CAS  Google Scholar 

  • Durando MM, Zarucco L, Schaer TP, Ross M, Reef VB (2006) Pneumopericardium in a horse secondary to sternal bone marrow aspiration. Equine Vet Education 18:75–79

    Article  Google Scholar 

  • Dyson SJ (2004) Medical management of superficial digital flexor tendonitis: a comparative study in 219 horses (1992-2000). Equine Vet J 36:415–419

    Article  PubMed  CAS  Google Scholar 

  • Ende N, Chen R (2001) Human umbilical cord blood cells ameliorate Huntington's disease in transgenic mice. J Med 32:231–240

    PubMed  CAS  Google Scholar 

  • Ende N, Chen R, Ende-Harris D (2001) Human umbilical cord blood cells ameliorate Alzheimer's disease in transgenic mice. J Med 32:241–247

    PubMed  CAS  Google Scholar 

  • Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, Sowers M, McAlindon T, Spector TD, Poole AR, Yanovski SZ, Ateshian G, Sharma L, Buckwalter JA, Brandt KD, Fries JF (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646

    PubMed  CAS  Google Scholar 

  • Ferris D, Frisbie DD, Kisiday J, McIlwraith CW, Hague B, Major M, Schneider R, Zubrod C, Watkins J, Kawcak C, Goodrich LR (2009) Clinical evaluation of bone marrow-derived mesenchymal stem cells in naturally occurring joint disease. Regen Med 4(Suppl 2):16

    Google Scholar 

  • Gardel L, Frias C, Afonso M, Serra L, Rada T, Gomes M, Reis R (2009) Autologous stem cell therapy for the treatment of bone fractures in cat: a case report. World Conference on Regenerative Medicine. Regen Med Suppl 4(Suppl 2) Conference Proceedings

  • Fortier LA (2005) Stem cells: classifications, controversies, and clinical applications. Vet Surg 34:415–423

    Article  PubMed  Google Scholar 

  • Fortier LA (2009) Equine embryonic stem & induced pluripotent stem cells. Regen Med 4(Suppl 2):15–16

    Google Scholar 

  • Fortier LA, Nixon AJ, Williams J, Cable CS (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 59:1182–1187

    PubMed  CAS  Google Scholar 

  • Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW (2009) Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 27:1675–1680

    Article  PubMed  Google Scholar 

  • Giovannini S, Brehm W, Mainil-Varlet P, Nesic D (2008) Multilineage differentiation potential of equine blood-derived fibroblast-like cells. Differentiation 76:118–129

    Article  PubMed  CAS  Google Scholar 

  • Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RK (2011) Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J. doi:10.1111/j.2042-3306.2011.00363.x [Epub ahead of print]

  • Guest DJ, Allen WR (2007) Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Stem Cells Dev 16:789–796

    Article  PubMed  CAS  Google Scholar 

  • Guest DJ, Smith MR, Allen WR (2008) Monitoring the fate of autologous and allogeneic mesenchymal progenitor cells injected into the superficial digital flexor tendon of horses: preliminary study. Equine Vet J 40:178–181

    Article  PubMed  CAS  Google Scholar 

  • Guest DJ, Li X, Allen WR (2009) Establishing an equine embryonic stem cell line. Regen Med 4(Suppl 2):18

    Google Scholar 

  • Guest DJ, Smith MR, Allen WR (2010) Equine embryonic stem-like cells and mesenchymal stromal cells have different survival rates and migration patterns following their injection into damaged superficial digital flexor tendon. Equine Vet J 42:636–642

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H, Keinan-Adamsky K, Winkel A, Shahab S, Navon G, Gross G, Gazit D (2006) Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest 116:940–952

    Article  PubMed  CAS  Google Scholar 

  • Hoynowski SM, Fry MM, Gardner BM, Leming MT, Tucker JR, Black L, Sand T, Mitchell KE (2007) Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochem Biophys Res Commun 362:347–353

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Yamada Y, Naiki T, Ueda M (2006) Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin Oral Implants Res 17:579–586

    Article  PubMed  Google Scholar 

  • Jafarian M, Eslaminejad MB, Khojasteh A, Mashhadi AF, Dehghan MM, Hassanizadeh R, Houshmand B (2008) Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e14–e24

    Article  PubMed  Google Scholar 

  • Jezierska-Wozniak K, Nosarzewska D, Tutas A, Mikolajczyk A, Oklinski M, Jurkowski MK (2010) Use of adipose tissue as a source of mesenchymal stem cells. Postepy Hig Med Dosw (Online) 64:326–332

    Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  PubMed  CAS  Google Scholar 

  • Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL (2007) Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng 13:1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  PubMed  CAS  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD (2008) Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J Orthop Res 26;322–331

    Google Scholar 

  • Knobloch K, Yoon U, Vogt PM (2008) Acute and overuse injuries correlated to hours of training in master running athletes. Foot Ankle Int 29:671–676

    Article  PubMed  Google Scholar 

  • Koch TG, Heerkens T, Thomsen PD, Betts DH (2007) Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol 7:26

    Article  PubMed  CAS  Google Scholar 

  • Koch TG, Berg LC, Betts DH (2008) Concepts for the clinical use of stem cells in equine medicine. Can Vet J 49:1009–1017

    PubMed  Google Scholar 

  • Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP (2006) Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 24:1613–1619

    Article  PubMed  CAS  Google Scholar 

  • Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I (2008) Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 333:207–215

    Article  PubMed  Google Scholar 

  • Krampera M, Pasini A, Pizzolo G, Cosmi L, Romagnani S, Annunziato F (2006) Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol 6:435–441

    Article  PubMed  CAS  Google Scholar 

  • Kraus KH, Kirker-Head C (2006) Mesenchymal stem cells and bone regeneration. Vet Surg 35:232–242

    Article  PubMed  Google Scholar 

  • Kuo CK, Tuan RS (2008) Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 14:1615–1627

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Lacitignola L, Crovace A, Rossi G, Francioso E (2008) Cell therapy for tendinitis, experimental and clinical report. Vet Res Commun 32(Suppl 1):S33–S38

    Article  PubMed  Google Scholar 

  • Le Blanc BK, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  PubMed  Google Scholar 

  • Le Blanc BK, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, Ljungman P, Lonnies H, Nava S, Ringden O (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21:1733–1738

    Article  PubMed  CAS  Google Scholar 

  • Le Blanc BK, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Cheuh HW, Yoo KH, Sung KW, Koo HH, Kim DH, Jung CW, Choi SJ, Oh WI, Yang YS (2011) Cotransplantation of third party umbilical cord mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood. Biol Blood Marrow Transplant 17:169–170

    Article  Google Scholar 

  • Leppänen M, Heikkilä P, Katiskalahti T, Tulamo R-M (2009a) Follow-up of recovery of equine tendon & ligament injuries 18-24 months after treatment with enriched autologous adipose-derived mesenchymal stem cells: a clinical study. Regen Med 4(Suppl 2):21–22

    Google Scholar 

  • Leppänen M, Miettinen S, Mäkinen S, Wilpola P, Katiskalahti T, Heikkilä P, Tulamo R-M (2009b) Management of equine tendon & ligament injuries with expanded autologous adipose-derived mesenchymal stem cells: a clinical study. Regen Med 4(Suppl 2):21

    Google Scholar 

  • Liao HT, Chen CT, Chen CH, Chen JP, Tsai JC (2011) Combination of guided osteogenesis with autologous platelet-rich fibrin glue and mesenchymal stem cell for mandibular reconstruction. J Trauma 70:228–237

    Article  PubMed  CAS  Google Scholar 

  • Longo UG, Ronga M, Maffulli N (2009) Acute ruptures of the achilles tendon. Sports Med Arthrosc 17:127–138

    Article  PubMed  Google Scholar 

  • Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ (2002) Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 30:879–886

    Article  PubMed  CAS  Google Scholar 

  • Martinello T, Bronzini I, Maccatrozzo L, Mollo A, Sampaolesi M, Mascarello F, Decaminada M, Patruno M (2010) Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res Vet Sci 91:18–24

    Article  PubMed  CAS  Google Scholar 

  • McDuffee L (2009) Osteoprogenitors in bone repair. World Conference on Regenerative Medicine. Regen Med Suppl 4(Suppl 2). Conference Proceedings

  • Muller I, Kordowich S, Holzwarth C, Isensee G, Lang P, Neunhoeffer F, Dominici M, Greil J, Handgretinger R (2008) Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 40:25–32

    Article  PubMed  Google Scholar 

  • Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  PubMed  Google Scholar 

  • Nirmalanandhan VS, Dressler MR, Shearn JT, Juncosa-Melvin N, Rao M, Gooch C, Bradica G, Butler DL (2007) Mechanical stimulation of tissue engineered tendon constructs: effect of scaffold materials. J Biomech Eng 129:919–923

    Article  PubMed  Google Scholar 

  • Nirmalanandhan VS, Rao M, Shearn JT, Juncosa-Melvin N, Gooch C, Butler DL (2008) Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. J Biomech 41:822–828

    Article  PubMed  Google Scholar 

  • Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 69:928–937

    Article  PubMed  CAS  Google Scholar 

  • Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M (2007) Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng 13:2949–2955

    Article  PubMed  Google Scholar 

  • Park A, Hogan MV, Kesturu GS, James R, Balian G, Chhabra AB (2010) Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng Part A 16:2941–2951

    Article  PubMed  CAS  Google Scholar 

  • Passeri S, Nocchi F, Lamanna R, Lapi S, Miragliotta V, Giannessi E, Abramo F, Stornelli MR, Matarazzo M, Plenteda D, Urciuoli P, Scatena F, Coli A (2009) Isolation and expansion of equine umbilical cord-derived matrix cells (EUCMCs). Cell Biol Int 33:100–105

    Article  PubMed  CAS  Google Scholar 

  • Pendleton A, Arden N, Dougados M, Doherty M, Bannwarth B, Bijlsma JW, Cluzeau F, Cooper C, Dieppe PA, Gunther KP, Hauselmann HJ, Herrero-Beaumont G, Kaklamanis PM, Leeb B, Lequesne M, Lohmander S, Mazieres B, Mola EM, Pavelka K, Serni U, Swoboda B, Verbruggen AA, Weseloh G, Zimmermann-Gorska I (2000) EULAR recommendations for the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 59:936–944

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Raabe O, Shell K, Würtz A, Reich CM, Wenisch S, Arnhold S (2011) Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells. Vet Res Commun 35:355–365

    Article  PubMed  Google Scholar 

  • Radcliffe CH, Flaminio MJ, Fortier LA (2010) Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations. Stem Cells Dev 19:269–282

    Article  PubMed  CAS  Google Scholar 

  • Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schutz MA, Duda GN, Schell H, van Griensven M, Redl H, Hutmacher D (2009) The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 30:2149–2163

    Article  PubMed  CAS  Google Scholar 

  • Richardson LE, Dudhia J, Clegg PD, Smith R (2007) Stem cells in veterinary medicine–attempts at regenerating equine tendon after injury. Trends Biotechnol 25:409–416

    Article  PubMed  CAS  Google Scholar 

  • Roufosse CA, Direkze NC, Otto WR, Wright NA (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597

    Article  PubMed  CAS  Google Scholar 

  • Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2

  • Sahoo S, Ang LT, Cho-Hong GJ, Toh SL (2009) Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation 79:102–110

    Article  PubMed  CAS  Google Scholar 

  • Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ (2009) Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 27:1392–1398

    Article  PubMed  CAS  Google Scholar 

  • Schramme M, Hunter S, Campbell N (2009) Ultrasonographic. MRI & histological evaluation of a new tendonitis model in the superficial digital flexor tendon of horses. Regen Med 4(Suppl 2):24–25

    Google Scholar 

  • Schuh EM, Friedman MS, Carrade DD, Li J, Heeke D, Oyserman SM, Galuppo LD, Lara DJ, Walker NJ, Ferraro GL, Owens SD, Borjesson DL (2009) Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood. Am J Vet Res 70:1526–1535

    Article  PubMed  Google Scholar 

  • Secco M, Zucconi E, Vieira NM, Fogaca LL, Cerqueira A, Carvalho MD, Jazedje T, Okamoto OK, Muotri AR, Zatz M (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150

    Article  PubMed  CAS  Google Scholar 

  • Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925

    Article  PubMed  Google Scholar 

  • Smith RK (2008) Mesenchymal stem cell therapy for equine tendinopathy. Disabil Rehabil 30:1752–1758

    Article  PubMed  Google Scholar 

  • Smith RK, Zunino L, Webbon PM, Heinegard D (1997) The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age and load. Matrix Biol 16:255–271

    Article  PubMed  CAS  Google Scholar 

  • Smith RK, Korda M, Blunn GW, Goodship AE (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35:99–102

    Article  PubMed  CAS  Google Scholar 

  • Smith R, Young N, Dudhia J, Kasashima Y, Clegg PD, Goodship A (2009) Effectiveness of bone-marrow-derived mesenchymal progenitor cells for naturally occurring tendinopathy in the horse. Regen Med 4(suppl 2):25–26

    Google Scholar 

  • Thorpe CT, Clegg PD, Birch HL (2010) A review of tendon injury: Why is the equine superficial digital flexor tendon most at risk? Equine Vet J 42:174–180

    Article  PubMed  CAS  Google Scholar 

  • Toupadakis CA, Wong A, Genetos DC, Cheung WK, Borjesson DL, Ferraro GL, Galuppo LD, Leach JK, Owens SD, Yellowley CE (2010) Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am J Vet Res 71:1237–1245

    Article  PubMed  Google Scholar 

  • Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    Article  PubMed  CAS  Google Scholar 

  • Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM (2006) Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35:601–610

    Article  PubMed  Google Scholar 

  • Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622

    Article  PubMed  Google Scholar 

  • Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM (2008) Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 37:713–724

    Article  PubMed  Google Scholar 

  • Vidal MA, Walker NJ, Napoli E, Borjesson DL (2011) Evaluation of Senescence in Mesenchymal Stem Cells Isolated from Equine Bone Marrow, Adipose Tissue, and Umbilical Cord Tissue. Stem Cells Dev. doi:10.1089/scd.2010.0589 [Epub ahead of print]

  • Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P (2009) Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol 10:29

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  PubMed  CAS  Google Scholar 

  • Watts AE, Yeager AE, Kopyov OV, Nixon AJ (2011) Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model. Stem Cell Res Ther 27(2):4

    Article  CAS  Google Scholar 

  • Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res 25:913–925

    Article  PubMed  CAS  Google Scholar 

  • Woodruff MA, Hutmacher D (2010) The return of a forgotten polymer–Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  • Yamada Y, Ueda M, Naiki T, Nagasaka T (2004a) Tissue-engineered injectable bone regeneration for osseointegrated dental implants. Clin Oral Implants Res 15:589–597

    Article  PubMed  Google Scholar 

  • Yamada Y, Ueda M, Naiki T, Takahashi M, Hata K, Nagasaka T (2004b) Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration. Tissue Eng 10:955–964

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462

    Article  PubMed  CAS  Google Scholar 

  • Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413

    Article  PubMed  CAS  Google Scholar 

  • Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, Josten C, Bader A, Marquass B (2010) Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am J Sports Med 38:1857–1869

    Article  PubMed  Google Scholar 

  • Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2:477–488

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Brehm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brehm, W., Burk, J., Delling, U. et al. Stem cell-based tissue engineering in veterinary orthopaedics. Cell Tissue Res 347, 677–688 (2012). https://doi.org/10.1007/s00441-011-1316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1316-1

Keywords

Navigation