Skip to main content
Log in

Immunohistochemical localisation of pre-synaptic muscarinic receptor subtype-2 (M2r) in the enteric nervous system of guinea-pig ileum

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The cholinergic muscarinic 2 receptor (M2r) is known to be present on smooth muscle cells in the intestine. Pharmacological studies also suggest that M2rs regulate transmitter release from nerves in the enteric nervous system. This study localised M2rs in the guinea-pig ileum using different antibodies and fluorescence immunohistochemistry. Double labelling with antibodies against neurochemical markers was used to identify the type of nerves bearing M2r. Guinea-pig ileum were fixed, prepared for sections and wholemounts and incubated with antisera against the M2r sequence. Tissue was double labelled with antibodies against neuronal nitric oxide synthase (nNOS), common choline acetyltransferase (cChAT), substance P (SP), synaptophysin and vesicular acetylcholine transporter (VAChT). Immunofluorescence was viewed using confocal microscopy. Abundant M2r-immunoreactivity (IR) was present on the surface of circular and longitudinal smooth muscle cells. M2r-IR was present in many but not all nerve fibres in the circular muscle and ganglia. M2r-IR was present in VAChT-IR and cChAT-IR cholinergic nerve fibres and SP-IR nerve fibres in the myenteric ganglia and submucosal ganglia. M2r-IR was present on a few nNOS-IR nerve fibres and around nNOS-IR neurons in the myenteric ganglia. In the circular muscle and deep muscular plexus, M2r-IR was present in many VAChT-IR and SP-IR nerve fibres and in few nNOS-IR nerves. M2rs are not only present on muscle cells in the intestine, but also on nerve fibres. M2rs may mediate cholinergic reflexes via their location on muscle and also via neural transmission. The pre-synaptic location supports pharmacological studies suggesting M2rs mediate neurotransmitter release from nerve fibres. The presence of M2rs on VAChT-IR, SP-IR and nNOS-IR-containing nerve fibres suggests M2rs may regulate ACh, SP and nitric oxide release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brehmer A, Schrodl F, Neuhuber W, Tooyama I, Kimura H (2004) Co-expression pattern of neuronal nitric oxide synthase and two variants of choline acetyltransferase in myenteric neurons of porcine ileum. J Chem Neuroanatomy 27:33–41

    Article  CAS  Google Scholar 

  • Bricola AA, Teixeira SA, De Luca IM, Muscara MN, Abdala FM, Porto CS, Zanesco A, Antunes E, De Nucci G (2003) Upregulation of muscarinic receptors by long-term nitric oxide inhibition in the rat ileum. Clin Exp Pharmacol Physiol 30:168–173

    Article  PubMed  CAS  Google Scholar 

  • Brookes SJ (2001) Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 262:58–70

    Article  PubMed  CAS  Google Scholar 

  • Burns AJ, Herbert TM, Ward SM, Sanders KM (1997) Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res 290:11–20

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Chen H, Redelman D, Ro S, Ward SM, Ordog T, Sanders KM (2007) Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol 292:C497–C507

    Article  PubMed  CAS  Google Scholar 

  • Christofi FL, Palmer JM, Wood JD (1991) Neuropharmacology of the muscarinic antagonist telenzepine in myenteric ganglia of the guinea-pig small intestine. Eur J Pharmacol 195:333–339

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Brookes SJ, Steele PA, Gibbins I, Burcher E, Kandiah CJ (1996) Neurochemical classification of myenteric neurons in the guinea-pig ileum. J Neurosci 75:949–967

    Article  CAS  Google Scholar 

  • Eglen RM (2001) Muscarinic receptors and gastrointestinal tract smooth muscle function. Life Sci 68:2573–2578

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Reddy H, Watson N (1994a) Selective inactivation of muscarinic receptor subtypes. Int J Biochem 26:1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Reddy H, Watson N, Challiss RA (1994b) Muscarinic acetylcholine receptor subtypes in smooth muscle. Trends Pharmacol Sci 15:114–119

    Article  CAS  Google Scholar 

  • Eglen RM, Hedge S, Watson N (1996) Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48:531–565

    PubMed  CAS  Google Scholar 

  • Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B (2000) Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 279:C529–C539

    PubMed  CAS  Google Scholar 

  • Fosbraey P, Johnson ES (1980a) Modulation by acetylcholine of the electrically-evoked release of [3H]-acetylcholine from the ileum of the guinea-pig. Br J Pharmacol 69:145–149

    PubMed  CAS  Google Scholar 

  • Fosbraey P, Johnson ES (1980b) Release-modulating acetylcholine receptors in cholinergic neurones of the guinea-pig ileum. Br J Pharmacol 68:289–300

    PubMed  CAS  Google Scholar 

  • Fu ML, Gerd W, Ake H, Johan H (1994) Agonist-like activity of anti-peptide antibodies directed against an autoimmune epitope on the heart muscarinic acetylcholine receptor. Receptors Channels 2:121–130

    PubMed  CAS  Google Scholar 

  • Galligan JJ (2002) Pharmacology of synaptic transmission in the enteric nervous system. Curr Opin Pharmacol 2:623–629

    Article  PubMed  CAS  Google Scholar 

  • Garzon M, Pickel VM (2006) Subcellular distribution of M2 muscarinic receptors in relation to dopaminergic neurons of the rat ventral tegmental area. J Comp Neurol 498:821–839

    Article  PubMed  CAS  Google Scholar 

  • Geber C, Mang CF, Kilbinger H (2006) Facilitation and inhibition by capsaicin of cholinergic neurotransmission in the guinea-pig small intestine. Naunyn Schmiedebergs Arch Pharmacol 372:277–283

    Article  PubMed  CAS  Google Scholar 

  • Gershon MD (1999) Endothelin and the development of the enteric nervous system. Clin Exp Pharmacol Physiol 26:985–988

    Article  PubMed  CAS  Google Scholar 

  • Giaroni C, Somaini L, Marino F, Cosentino M, Senaldi A, De Ponti F, Lecchini S, Frigo G (1999) Modulation of enteric cholinergic neurons by hetero- and autoreceptors: cooperation among inhibitory inputs. Life Sci 65:813–821

    Article  PubMed  CAS  Google Scholar 

  • Giglio D, Delbro DS, Tobin G (2005) Postjunctional modulation by muscarinic M2 receptors of responses to electrical field stimulation of rat detrusor muscle preparations. Auton Autacoid Pharmacol 25:113–120

    Article  PubMed  CAS  Google Scholar 

  • Gomez A, Martos F, Bellido I, Marquez E, Garcia AJ, Pavia J, Sanchez de la Cuesta F (1992) Muscarinic receptor subtypes in human and rat colon smooth muscle. Biochem Pharmacol 43:2413–2419

    Article  PubMed  CAS  Google Scholar 

  • Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Grady EF, Baluk P, Bohm S, Gamp PD, Wong H, Payan DG, Ansel J, Portbury AL, Furness JB, McDonald DM, Bunnett NW (1996) Characterization of antisera specific to NK1, NK2, and NK3 neurokinin receptors and their utilization to localize receptors in the rat gastrointestinal tract. J Neurosci 16:6975–6986

    PubMed  CAS  Google Scholar 

  • Hanani M, Freund HR (2000) Interstitial cells of Cajal—their role in pacing and signal transmission in the digestive system. Acta Physiol Scand 170:177–190

    Article  PubMed  CAS  Google Scholar 

  • Harrington AM, Hutson JM, Southwell BR (2005) Immunohistochemical localization of substance P NK1 receptor in guinea pig distal colon. Neurogastroenterol Motil 17:727–737

    Article  PubMed  CAS  Google Scholar 

  • Harrington AM, Hutson JM, Southwell BR (2007) Immunohistochemical localisation of cholinergic muscarinic receptor subtype 1 (M1r) in the guinea pig and human enteric nervous system. J Chem Neuroanat 33:193–201

    Article  PubMed  CAS  Google Scholar 

  • Hebeiss K, Kilbinger H (1999) Cholinergic and GABAergic regulation of nitric oxide synthesis in the guinea pig ileum. Am J Physiol 276:G862–G866

    PubMed  CAS  Google Scholar 

  • Iino S, Nojyo Y (2006) Muscarinic M(2) acetylcholine receptor distribution in the guinea-pig gastrointestinal tract. Neuroscience 138:549–559

    Article  PubMed  CAS  Google Scholar 

  • Iverson H, Wiklund NP, Olgart C, Gustafsson LE (1997) Nerve stimulation-induced nitric oxide release as a consequence of muscarinic M1 receptor activation. Eur J Pharmacol 331:213–219

    Article  Google Scholar 

  • Kilbinger H, Nafziger M (1985) Two types of neuronal muscarine receptors modulating acetylcholine release from guinea-pig myenteric plexus. Naunyn Schmiedebergs Arch Pharmacol 328:304–309

    Article  PubMed  CAS  Google Scholar 

  • Klapproth H, Reinheimer T, Metzen J, Munch M, Bittinger F, Kirkpatrick CJ, Hohle KD, Schemann M, Racke K, Wessler I (1997) Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn Schmiedebergs Arch Pharmacol 355:515–523

    Article  PubMed  CAS  Google Scholar 

  • Koppen CJ van, Nathanson NM (1990) Site-directed mutagenesis of the m2 muscarinic acetylcholine receptor. Analysis of the role of N-glycosylation in receptor expression and function. J Biol Chem 265:20887–20892

    PubMed  Google Scholar 

  • Kortezova NI, Shikova LI, Milusheva EA, Itzev DE, Bagaev VA, Mizhorkova ZN (2004) Muscarinic modulation of nitrergic neurotransmission in guinea-pig gastric fundus. Neurogastroenterol Motil 16:155–165

    Article  PubMed  CAS  Google Scholar 

  • Kurjak M, Sattler D, Schusdziarra V, Allescher H (1999) Characterization of prejunctional and postjunctional muscarinic receptors of the ascending reflex contraction in rat ileum. Pharmacol Exp Ther 290:893–900

    CAS  Google Scholar 

  • Lavin ST, Southwell BR, Murphy R, Jenkinson KM, Furness JB (1998) Activation of neurokinin 1 receptors on interstitial cells of Cajal of the guinea-pig small intestine by substance P. Histochem Cell Biol 110:263–271

    Article  PubMed  CAS  Google Scholar 

  • Leclere PG, Lefebvre RA (2002) Presynaptic modulation of cholinergic neurotransmission in the human proximal stomach. Br J Pharmacol 135:135–142

    Article  PubMed  CAS  Google Scholar 

  • Lee KB, Pals-Rylaarsdam R, Benovic JL, Hosey MM (1998) Arrestin-independent internalization of the m1, m3, and m4 subtypes of muscarinic cholinergic receptors. J Biol Chem 273:12967–12972

    Article  PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    Article  PubMed  CAS  Google Scholar 

  • Lomax AE, Furness JB (2000) Neurochemical classification of enteric neurons in the guinea–pig distal colon. Cell Tissue Res 302:59–72

    Article  PubMed  CAS  Google Scholar 

  • Marino F, Cosentino M, De Ponti F, Giaroni C, Somaini L, Bombelli R, Ferrari M, Aasen AJ, Lecchini S, Frigo G (1997) Muscarinic modulation of endogenous noradrenaline release from adrenergic terminals in the guinea-pig colon. J Auton Pharmacol 17:365–372

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Griffin MT, Shehnaz D, Taketo MM, Ehlert FJ (2003) Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M2 receptor knockout mice. J Pharmacol Exp Ther 305:106–113

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Whiting RL (1990) The binding of [3H]4-diphenylacetoxy-N-methylpiperidine methiodide to longitudinal ileal smooth muscle muscarinic receptors. Eur J Pharmacol 176:197–205

    Article  PubMed  CAS  Google Scholar 

  • Morita K, North RA, Tokimasa T (1982) Muscarinic presynaptic inhibition of synaptic transmission in myenteric plexus of guinea-pig ileum. J Physiol (Lond) 333:141–149

    CAS  Google Scholar 

  • North RA, Slack BE, Surprenant A (1985) Muscarinic M1 and M2 receptors mediate depolarization and presynaptic inhibition in guinea-pig enteric nervous system. J Physiol (Lond) 368:435–452

    CAS  Google Scholar 

  • Olgart C, Iversen HH (1999) Nitric oxide-dependent relaxation induced by M1 muscarinic receptor activation in the rat small intestine. Br J Pharmacol 127:309–313

    Article  PubMed  CAS  Google Scholar 

  • Portbury AL, Furness JB, Young HM, Southwell BR, Vigna SR (1996) Localisation of NK1 receptor immunoreactivity to neurons and interstitial cells of the guinea-pig gastrointestinal tract. J Comp Neurol 367:342–351

    Article  PubMed  CAS  Google Scholar 

  • Racke K, Schworer H, Agoston DV, Kilbinger H (1991) Evidence that neuronally released vasoactive intestinal polypeptide inhibits the release of serotonin from enterochromaffin cells of the guinea pig small intestine. Acta Endocrinol (Copenh) 124:203–207

    CAS  Google Scholar 

  • Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275:41447–41457

    Article  PubMed  CAS  Google Scholar 

  • Sawyer G (1998) Contractile roles of the M2 and M3 muscarinic receptors in the guinea pig colon. J Pharmacol Exp Ther 284:269–277

    PubMed  CAS  Google Scholar 

  • Slutsky I, Silman I, Parnas I, Parnas H (2001) Presynaptic M(2) muscarinic receptors are involved in controlling the kinetics of ACh release at the frog neuromuscular junction. J Physiol (Lond) 536:717–725

    Article  CAS  Google Scholar 

  • Slutsky I, Wess J, Gomeza J, Dudel J, Parnas I, Parnas H (2003) Use of knockout mice reveals involvement of M2-muscarinic receptors in control of the kinetics of acetylcholine release. J Neurophysiol 89:1954–1967

    Article  PubMed  CAS  Google Scholar 

  • Southwell BR (2003) Localization of protein kinase C theta immunoreactivity to interstitial cells of Cajal in guinea-pig gastrointestinal tract. Neurogastroenterol Motil 15:139–147

    Article  PubMed  CAS  Google Scholar 

  • Southwell BR, Woodman HL, Murphy R, Royal SJ, Furness JB (1996) Characterisation of substance P-induced endocytosis of NK1 receptors on enteric neurons. Histochem Cell Biol 106:563–571

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Fujinami K, Goto H, Fujita A, Taketo MM, Manabe T, Matsui M, Hata F (2005) Roles of M2 and M4 muscarinic receptors in regulating acetylcholine release from myenteric neurons of mouse ileum. J Neurophysiol 93:2841–2848

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Toyoshima M, Mukai K, Hagi K, Matsui M, Nakajima H, Azuma YT, Hata F (2006) Involvement of M(2) muscarinic receptors in relaxant response of circular muscle of mouse gastric antrum. Neurogastroenterol Motil 18:226–233

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Tanaka K, Nakajima H, Matsui M, Azuma YT (2007) M2 and M3 muscarinic receptors are involved in enteric nerve-mediated contraction of the mouse ileum: findings obtained with muscarinic-receptor knockout mouse. Am J Physiol Gasterointest Liver Physiol 292:G154–G164

    Article  CAS  Google Scholar 

  • Thomas EA, Baker SA, Ehlert FJ (1993) Functional role for the M2 muscarinic receptor in smooth muscle of guinea pig ileum. Mol Pharmacol 44:102–110

    PubMed  CAS  Google Scholar 

  • Tong YC, Cheng JT, Hsu CT (2006) Alterations of M(2)-muscarinic receptor protein and mRNA expression in the urothelium and muscle layer of the streptozotocin-induced diabetic rat urinary bladder. Neurosci Lett 406:216–221

    Article  PubMed  CAS  Google Scholar 

  • Tonini M, Spelta V, De Ponti F, De Giorgio R, D’Agostino G, Stanghellini V, Corinaldesi R, Sternini C, Crema F (2001) Tachykinin-dependent and -independent components of peristalsis in the guinea pig isolated distal colon. Gastroenterology 120:938–945

    Article  PubMed  CAS  Google Scholar 

  • Tran JA, Matsui M, Ehlert FJ (2006) Differential coupling of muscarinic M1, M2, and M3 receptors to phosphoinositide hydrolysis in urinary bladder and longitudinal muscle of the ileum of the mouse. J Pharmacol Exp Ther 318:649–656

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama T, Chess-Williams R (2004) Muscarinic receptor subtypes of the bladder and gastrointestinal tract. J Smooth Muscle Res 40:237–247

    Article  PubMed  Google Scholar 

  • Vannucchi MG, Corsani L, Faussone-Pellegrini MS (1999) Substance P immunoreactive nerves and interstitial cells of Cajal in the rat and guinea-pig ileum. A histochemical and quantitative study. Neurosci Lett 268:49–52

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Kobayashi O, Torocsik A, Kinjo M, Nagashima H, Manabe N, Goldiner PL, Potter PE, Foldes FF (1989) Heterogeneity of presynaptic muscarinic receptors involved in modulation of transmitter release. Neuroscience 31:259–267

    Article  PubMed  CAS  Google Scholar 

  • Vorobiov D, Bera AK, Keren-Raifman T, Barzilai R, Dascal N (2000) Coupling of the muscarinic m2 receptor to G protein-activated K(+) channels via Galpha(z) and a receptor-Galpha(z) fusion protein. Fusion between the receptor and Galpha(z) eliminates catalytic (collision) coupling. J Biol Chem 275:4166–4170

    Article  PubMed  CAS  Google Scholar 

  • Wang XY, Sanders KM, Ward SM (1999) Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig small intestine. Cell Tissue Res 295:247–256

    Article  PubMed  CAS  Google Scholar 

  • Ward SM, Dalziel HH, Khoyi MA, Westfall AS, Sanders KM, Westfall DP (1996) Hyperpolarization and inhibition of contraction mediated by nitric oxide released from enteric inhibitory neurones in guinea-pig taenia coli. Br J Pharmacol 118:49–56

    PubMed  CAS  Google Scholar 

  • Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM (2000) Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci 20:1393–1403

    PubMed  CAS  Google Scholar 

  • Ward SM, Sanders KM, Hirst GD (2004) Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil 16(Suppl 1):112–117

    Article  PubMed  Google Scholar 

  • Wiklund CU, Wiklund NP, Gustafsson LE (1993) Modulation of neuroeffector transmission by endogenous nitric oxide: a role for acetylcholine receptor-activated nitric oxide formation, as indicated by measurements of nitric oxide/nitrite release. Eur J Pharmacol 240:235–242

    Article  PubMed  CAS  Google Scholar 

  • Zholos AV, Bolton TB (1997) Muscarinic receptor subtypes controlling the cationic current in guinea-pig ileal smooth muscle. Br J Pharmacol 122:885–893

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Pam Farmer, Carl Kirkwood, Karen Boniface and Jack Wood for technical advice, Cristal Peck for her artistry, and Magdy Sourial for animal handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Southwell.

Additional information

Work in this study was funded by the National Health and Medical Research Council (grant numbers: 114215 and 216704; Senior Research Fellowship to B.S.), a Melbourne University Research Scholarship and the Murdoch Children’s Research Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, A.M., Hutson, J.M. & Southwell, B.R. Immunohistochemical localisation of pre-synaptic muscarinic receptor subtype-2 (M2r) in the enteric nervous system of guinea-pig ileum. Cell Tissue Res 332, 37–48 (2008). https://doi.org/10.1007/s00441-007-0533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0533-0

Keywords

Navigation