Skip to main content

Advertisement

Log in

Comparative analysis of thyroxine distribution in ascidian larvae

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The ascidian endostyle is a mucus-secreting pharyngeal organ, it has iodine-concentrating activity and the biosynthesis of thyroid hormones has been well documented. According to our recent findings, ascidians possess thyroid hormones, which are localized in mesenchymal cells. We have studied the presence and localization of l-thyroxine (T4) in Ascidia malaca (Traustedt), Ascidiella aspersa (Müller), Phallusia mamillata (Cuvier) and Ciona intestinalis (Linnaeus) larvae and its involvement in metamorphosis. In vivo treatment of swimming larvae with exogenous T4 and thiourea (a thyroid hormone synthesis inhibitor), demonstrate the presence of T4 during larval development. These results were confirmed by in vitro experiments utilizing dot blotting, radioimmunoassay and immunoperoxidase staining. The hormone was localized in mesenchymal cells of all four ascidians, spread out in the body cavity, under the adhesive papillae and around the intestine. The presence of TH in mesenchymal cells could be related to blood cells, musculature and heart tissue differentiation. The results suggest that this hormone could be involved in the control of metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrington EJW, Thorpe A (1965) The identification of monoiodotyrosine, diiodotyrosine and thyroxine in extracts of the endostyle of the ascidian, Ciona intestinalis. Proc R Soc Ser B 163:136–149

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burighel P, Cloney RA (1997) Urochordata: Ascidiacea. Microscopic anatomy of invertebrates 15:221–347

  • Campbell RK, Satoh N, Degnan BM (2004) Piecing together evolution of the vertebrate endocrine system. Trends Genet 20(8):359–366

    Article  PubMed  CAS  Google Scholar 

  • Carosa E, Fanelli A, Ulisse S, Di Lauro R, Rall JE, Jannini EA (1998) Ciona intestinalis nuclear receptor 1: a member of steroid/thyroid hormone receptor family. Proc Natl Acad Sci 95:11152–11157

    Article  PubMed  CAS  Google Scholar 

  • Chambon JP, Soule J, Pomies P, Fort P, Sahuquet A, Alexandre D, Mangeat PH, Baghdiguian S (2002) Tail regression in Ciona intestinalis (Prochordate) involves a caspase-dependent apoptosis event associated with ERK activation. Development 129:3105–3114

    PubMed  CAS  Google Scholar 

  • Chino Y, Saito M, Yamasu K, Suyemitsu T, Ishihara K (1994) Formation of the adult rudiment of sea urchins is influenced by thyroid hormones. Dev Biol 161:1–11

    Article  PubMed  Google Scholar 

  • Cloney RA (1990) Urochordata-Ascidiacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Oxford and IBH, New Delhi, pp 391–451

    Google Scholar 

  • Davidson B, Jacobs M, Swalla BJ (2004) The individual as a module: metazoan evolution and coloniality. In: Schlosser G, Wagner G (eds) Modularity in development and evolution. University of Chicago Press, Chicago, pp 443–465

    Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Dunn AD (1980) Studies on iodoproteins and thyroid hormones in ascidians. Gen Comp Endocrinol 40:473–483

    Article  PubMed  CAS  Google Scholar 

  • Eales JG (1997) Iodine metabolism and thyroid-related functions in organisms lacking thyroid follicles: are thyroid hormones also vitamins? Proc Soc Exp Biol Med 214:302–317

    PubMed  CAS  Google Scholar 

  • Fredriksson G, Lebel JM, Leloup J (1993) Thyroid hormones and putative nuclear T3 receptors in tissues of the ascidians, Phallusia mamillata Cuvier. Gen Comp Endocrinol 92:379–387

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto M (1975) Autoradiographic evidence for iodine binding blood cells in the oozoid of Amaroucium constellatum, a compound ascidian. Experientia 31:609–610

    Article  PubMed  CAS  Google Scholar 

  • Galton VA (1988) The role of thyroid hormones in amphibian development. Am Zool 28:309–318

    CAS  Google Scholar 

  • Garstang W (1928) The morphology of the tunicate and its bearing on the phylogeny of the chordate. Q J Microsc Sci 72:51–187

    Google Scholar 

  • Gordon JT, Crutchfield FL, Jennings AS, Dratman MB (1982) Preparation of lipid-free tissue extracts for chromatographic determination of thyroid hormones and metabolites. Arch Biochem Biophys 216:407–415

    Article  PubMed  CAS  Google Scholar 

  • Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119:142–147

    Article  PubMed  CAS  Google Scholar 

  • Heyland A, Hodin J (2004) Heterochronic development shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of non-feeding development. Evolution 58:524–538

    PubMed  CAS  Google Scholar 

  • Heyland A, Reitzel MA, Hodin J (2004) Thyroid hormones determine development mode in sand dollars (Echinodermata: Echinoidea). Evol Dev 6:382–392

    Article  PubMed  CAS  Google Scholar 

  • Heyland A, Hodin J, Reitzel MA (2005) Hormone signalling in evolution and development: a non-model system approach. BioEssays 27:64–75

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Nishida H (1997) Development fates of larval tissue after metamorphosis in ascidian Halocynthia roretzi. I. Origin of mesodermal tissue of the juvenile. Dev Biol 192:199–210

    Article  PubMed  CAS  Google Scholar 

  • Hodin J (2000) Plasticity and constrains in development and evolution. J Exp Zool 288:1–20

    Article  PubMed  CAS  Google Scholar 

  • Johnson LG, Cartwright CM (1996) Thyroxine-accelerated larval development in the crown-of-thorns starfish, Acanthaster planci. Biol Bull 190:299–301

    Article  CAS  Google Scholar 

  • Kimura Y, Yoshida M, Morisawa M (2003) Interaction between noradrenaline or adrenaline and the beta(1)-adrenergic receptor in the nervous system triggers early metamorphosis of larvae in the ascidian, Ciona savignyi. Dev Biol 258(1):129–140

    Article  PubMed  CAS  Google Scholar 

  • Leloup J, Seugnet I (1989) In vivo thyroxine monodeiodination in the ascidian, Phallusia mamillata. Gen Comp Endocrinol 74:276–277

    Google Scholar 

  • Ogasawara M, Di Lauro R, Satoh N (1999) Ascidian homologs of mammalian thyroid peroxidase genes are expressed in the thyroid equivalent region of the endostyle. J Exp Zool (Mol Dev Evol) 285:158–169

    Article  CAS  Google Scholar 

  • Patricolo E, Ortolani G, Cascio A (1981) The effect of thyroxine on the metamorphosis of Ascidia malaca. Cell Tissue Res 214:289–301

    Article  PubMed  CAS  Google Scholar 

  • Patricolo E, Cammarata M, D’Agati P (2001) Presence of thyroid hormones in ascidian larvae and their involvement in metamorphosis. J Exp Zool 290:426–430

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Seki M, Amemiya S, Yamasu K, Suyemitsu T, Ishihara K (1998) Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones. Dev Growth Differ 40:307–312

    Article  PubMed  CAS  Google Scholar 

  • Satoh N (1994) Developmental biology of ascidians. Cambridge University Press, New York

    Google Scholar 

  • Satoh N, Jeffery WR (1995) Chasing tails in ascidians: developmental insights into the origin and evolution of chordates. Trends Genet 11:354–359

    Article  PubMed  CAS  Google Scholar 

  • Shepherdley CA, Klootwijk W, Makabe KW, Visser TJ, Kuiper GGJM (2004) An ascidian homolog of vertebrate iodothyronine deiodinases. Endocrinology 145(3):1255–1268

    Article  CAS  Google Scholar 

  • Smith TJ, Davids FB, Davids PJ (1992) Stereochemical requirements for the modulation by retinoic acid of thyroid hormone activation of Ca2+ ATPase and binding at human erythrocyte membrane. Biochem J 284:583–587

    PubMed  CAS  Google Scholar 

  • Spangenberg DB (1974) Thyroxine in early strobilation in Aurelia aurita. Am Zool 14:825–831

    CAS  Google Scholar 

  • Spangenberg DB (1984) Effects of exogenous thyroxine on statolith synthesis and resorption in Aurelia. Am Zool 24:917–923

    CAS  Google Scholar 

  • Thorndyke MC (1973) An in vivo stimulatory effect of 3,3′,5-triiodo-L-thyronine on polyphenol oxidase activity in an ascidian. J Endocrinol 58:679–680

    PubMed  CAS  Google Scholar 

  • Tokuoka M, Imai KS, Satou Y, Satoh N (2004) Three distinct lineages of mesenchymal cells in Ciona intestinalis embryos demonstrated by specific gene expression. Dev Biol 274:211–224

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Gordon J (1984) Immunoblotting and immunobinding—current status and outlook. J Immunol Meth 72:313–340

    Article  CAS  Google Scholar 

  • Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of the late Professor Eleonora Patricolo.

The authors wish to thank Dr. Andreas Heyland and Professor Caterina Mansueto for critical reading of the text. The research was supported by a MIUR grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cammarata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Agati, P., Cammarata, M. Comparative analysis of thyroxine distribution in ascidian larvae. Cell Tissue Res 323, 529–535 (2006). https://doi.org/10.1007/s00441-005-0015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0015-1

Keywords

Navigation