Skip to main content

Advertisement

Log in

Mutations of PTPN23 in developmental and epileptic encephalopathy

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of neurodevelopmental disorders with poor prognosis. Recent discoveries have greatly expanded the repertoire of genes that are mutated in epileptic encephalopathies and DEE, often in a de novo fashion, but in many patients, the disease remains molecularly uncharacterized. Here, we describe a new form of DEE in patients with likely deleterious biallelic variants in PTPN23. The phenotype is characterized by early onset drug-resistant epilepsy, severe and global developmental delay, microcephaly, and sometimes premature death. PTPN23 encodes a tyrosine phosphatase with strong brain expression, and its knockout in mouse is embryonically lethal. Structural modeling supports a deleterious effect of the identified alleles. Our data suggest that PTPN23 mutations cause a rare severe form of autosomal-recessive DEE in humans, a finding that requires confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alazami AM, Patel N, Shamseldin HE et al (2015) Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep 10:148–161

    Article  CAS  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinform Oxf Engl 22:195–201

    Article  CAS  Google Scholar 

  • Doyotte A, Mironov A, McKenzie E, Woodman P (2008) The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis. Proc Natl Acad Sci USA 105:6308–6313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahloth D, Levy C, Heaven G et al (1993) Structural basis for selective interaction between the ESCRT regulator HD-PTP and UBAP1. Struct Lond Engl 2016(24):2115–2126

    Google Scholar 

  • Germain B, Maria BL (2017) Epileptic encephalopathies. J Child Neurol: 883073817697846

  • Gingras M-C, Zhang YL, Kharitidi D et al (2009a) HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One 4:e5105

    Article  PubMed  PubMed Central  Google Scholar 

  • Gingras M-C, Kharitidi D, Chénard V et al (2009b) Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP). Int J Dev Biol 53:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Gürsoy S, Erçal D (2016) Diagnostic approach to genetic causes of early-onset epileptic encephalopathy. J Child Neurol 31:523–532

    Article  PubMed  Google Scholar 

  • Husedzinovic A, Neumann B, Reymann J et al (2015) The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Mol Biol Cell 26:161–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee JE, Heynen-Genel S et al (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464:1048–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manteghi S, Gingras M-C, Kharitidi D et al (2016) Haploinsufficiency of the ESCRT component HD-PTP predisposes to cancer. Cell Rep 15:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE (2016) The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15:304–316

    Article  PubMed  Google Scholar 

  • Miura GI, Roignant J-Y, Wassef M, Treisman JE (2008) Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Dev Camb Engl 135:1913–1922

    CAS  Google Scholar 

  • Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521

    Article  PubMed  Google Scholar 

  • Spielmann M, Kakar N, Tayebi N et al (2016) Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice. Genome Res 26:183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefani F, Zhang L, Taylor S et al (2011) UBAP1 is a component of an endosome-specific ESCRT-I complex that is essential for MVB sorting. Curr Biol 21:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Tavyev Asher YJ, Scaglia F (2012) Molecular bases and clinical spectrum of early infantile epileptic encephalopathies. Eur J Med Genet 55:299–306

    Article  PubMed  Google Scholar 

  • The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169

    Article  Google Scholar 

  • Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K et al (2017) Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet 25:176–182

    Article  CAS  PubMed  Google Scholar 

  • Vogt J, Kohlhase J, Morlot S et al (2011) Monozygotic twins discordant for neurofibromatosis type 1 due to a postzygotic NF1 gene mutation. Hum Mutat 32:E2134–E2147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families for their participation in this research project. The research by STA reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). The exome analysis was performed on CHEOPS, a high performance computer cluster of the regional data center of the University of Cologne (RRZK), funded by the Deutsche Forschungsgemeinschaft (DFG). We acknowledge the support of the Saudi Human Genome Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guntram Borck.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 57 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowada, N., Hashem, M.O., Yilmaz, R. et al. Mutations of PTPN23 in developmental and epileptic encephalopathy. Hum Genet 136, 1455–1461 (2017). https://doi.org/10.1007/s00439-017-1850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-017-1850-3

Navigation