Skip to main content

Advertisement

Log in

Silencing human genetic diseases with oligonucleotide-based therapies

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

RNA interference is an endogenous mechanism present in most eukaryotic cells that enables degradation of specific mRNAs. Pharmacological exploitation of this mechanism for therapeutic purposes attracted a whole amount of attention in its initial years, but was later hampered due to difficulties in delivery of the pharmacological agents to the appropriate organ or tissue. Advances in recent years have to a certain level started to address this specific issue. Genetic diseases are caused by aberrations in gene sequences or structure; these particular abnormalities are in theory easily addressable by RNAi therapeutics. Sequencing of the human genome has largely contributed to the identification of alterations responsible for genetic conditions, thus facilitating the design of compounds that can address these diseases. This review addresses the currently on-going programs with the aim of developing RNAi and other antisense compounds for the treatment of genetic conditions and the pros and cons that these products may encounter along the way. The authors have focused on those programs that have reached clinical trials or are very close to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59:75–86

    Article  PubMed  CAS  Google Scholar 

  • Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F, van Ommen GJ, van Deutekom JC (2003) Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 12:907–914

    Article  PubMed  CAS  Google Scholar 

  • Abifadel M, Rabes JP, Devillers M, Munnich A, Erlich D, Junien C, Varret M, Boileau C (2009) Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat 30:520–529

    Article  PubMed  CAS  Google Scholar 

  • Ackermann EJ, Guo S, Booten S, Alvarado L, Benson M, Hughes S, Monia BP (2012) Clinical development of an antisense therapy for the treatment of transthyretin-associated polyneuropathy. Amyloid 19(Suppl 1):43–44

    Article  PubMed  CAS  Google Scholar 

  • Ando Y, Ueda M (2012) Diagnosis and therapeutic approaches to transthyretin amyloidosis. Curr Med Chem 19:2312–2323

    Article  PubMed  CAS  Google Scholar 

  • Andrade C (1952) A peculiar form of peripheral neuropathy: familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75:408–427

    Article  PubMed  CAS  Google Scholar 

  • Arechavala-Gomeza V, Kinali M, Feng L, Guglieri M, Edge G, Main M, Hunt D, Lehovsky J, Straub V, Bushby K, Sewry CA, Morgan JE, Muntoni F (2010) Revertant fibres and dystrophin traces in Duchenne muscular dystrophy: implication for clinical trials. Neuromuscul Disord 20:295–301

    Article  PubMed  Google Scholar 

  • Berntorp E, Gomperts E, Hoots K, Wong WY (2006) The next generation of hemophilia treatment specialists. Semin Thromb Hemost 32(Suppl 2):39–42

    Article  PubMed  Google Scholar 

  • Boyle MP (2007) Adult cystic fibrosis. JAMA 298:1787–1793

    Article  PubMed  CAS  Google Scholar 

  • Brautbar A, Ballantyne CM (2011) Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat Rev Cardiol 8:253–265

    Article  PubMed  CAS  Google Scholar 

  • Brouwer JR, Willemsen R, Oostra BA (2009) Microsatellite repeat instability and neurological disease. BioEssays 31:71–83

    Article  PubMed  CAS  Google Scholar 

  • Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  PubMed  CAS  Google Scholar 

  • Chambers LA, Rollins BM, Tarran R (2007) Liquid movement across the surface epithelium of large airways. Respir Physiol Neurobiol 159:256–270

    Article  PubMed  CAS  Google Scholar 

  • Charlton-Menys V, Durrington PN (2008) Human cholesterol metabolism and therapeutic molecules. Exp Physiol 93:27–42

    PubMed  CAS  Google Scholar 

  • Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  PubMed  CAS  Google Scholar 

  • Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    Article  PubMed  CAS  Google Scholar 

  • Collawn JF, Lazrak A, Bebok Z, Matalon S (2012) The CFTR and ENaC debate: how important is ENaC in CF lung disease? Am J Physiol Lung Cell Mol Physiol 302:L1141–L1146

    Article  PubMed  CAS  Google Scholar 

  • Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  PubMed  CAS  Google Scholar 

  • Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340

    Article  PubMed  CAS  Google Scholar 

  • Day JW, Ranum LP (2005) Genetics and molecular pathogenesis of the myotonic dystrophies. Curr Neurol Neurosci Rep 5:55–59

    Article  PubMed  CAS  Google Scholar 

  • Dedoussis GV (2007) Apolipoprotein polymorphisms and familial hypercholesterolemia. Pharmacogenomics 8:1179–1189

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey RK, Rajeev KG, Manoharan M, Sah DW, Zamore PD, Aronin N (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 104:17204–17209

    Article  PubMed  CAS  Google Scholar 

  • Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G (1998) Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7:1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Dykxhoorn DM, Schlehuber LD, London IM, Lieberman J (2006) Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism. Proc Natl Acad Sci USA 103:5953–5958

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Gagnon KT (2010) HD therapeutics—CHDI fifth annual conference. IDrugs 13:219–223

    PubMed  Google Scholar 

  • Goyenvalle A, Seto JT, Davies KE, Chamberlain J (2011) Therapeutic approaches to muscular dystrophy. Hum Mol Genet 20:R69–R78

    Article  PubMed  CAS  Google Scholar 

  • Haddley K (2011) Mipomersen sodium: a new option for the treatment of familial hypercholesterolemia. Drugs Today (Barc) 47:891–901

    CAS  Google Scholar 

  • Harper SQ (2009) Progress and challenges in RNA interference therapy for Huntington disease. Arch Neurol 66:933–938

    Article  PubMed  Google Scholar 

  • Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, Yang L, Kotin RM, Paulson HL, Davidson BL (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci USA 102:5820–5825

    Article  PubMed  CAS  Google Scholar 

  • Hickerson RP, Smith FJ, McLean WH, Landthaler M, Leube RE, Kaspar RL (2006) SiRNA-mediated selective inhibition of mutant keratin mRNAs responsible for the skin disorder pachyonychia congenita. Ann NY Acad Sci 1082:56–61

    Article  PubMed  CAS  Google Scholar 

  • Hickerson RP, Flores MA, Leake D, Lara MF, Contag CH, Leachman SA, Kaspar RL (2011) Use of self-delivery siRNAs to inhibit gene expression in an organotypic pachyonychia congenita model. J Invest Dermatol 131:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  • Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B (2000) Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA 97:9618–9623

    Article  PubMed  CAS  Google Scholar 

  • Horton JD, Cohen JC, Hobbs HH (2007) Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 32:71–77

    Article  PubMed  CAS  Google Scholar 

  • Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR (2008) Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82:834–848

    Article  PubMed  CAS  Google Scholar 

  • Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412:191–209

    Article  PubMed  CAS  Google Scholar 

  • Innerarity TL, Mahley RW, Weisgraber KH, Bersot TP, Krauss RM, Vega GL, Grundy SM, Friedl W, Davignon J, McCarthy BJ (1990) Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res 31:1337–1349

    PubMed  CAS  Google Scholar 

  • Jabs DA, Griffiths PD (2002) Fomivirsen for the treatment of cytomegalovirus retinitis. Am J Ophthalmol 133:552–556

    Article  PubMed  CAS  Google Scholar 

  • Kaspar RL (2005) Challenges in developing therapies for rare diseases including pachyonychia congenita. J Investig Dermatol Symp Proc 10:62–66

    Article  PubMed  Google Scholar 

  • Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherford M, McCulley C, Popplewell L, Graham IR, Dickson G, Wood MJ, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928

    Article  PubMed  CAS  Google Scholar 

  • Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Muller CR, Lindlof M, Kaariainen H et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498–506

    PubMed  CAS  Google Scholar 

  • Kubodera T, Yamada H, Anzai M, Ohira S, Yokota S, Hirai Y, Mochizuki H, Shimada T, Mitani T, Mizusawa H, Yokota T (2010) In vivo application of an RNAi strategy for the selective suppression of a mutant allele. Hum Gene Ther 22:27–34

    Article  Google Scholar 

  • Lara MF, Gonzalez-Gonzalez E, Speaker TJ, Hickerson RP, Leake D, Milstone LM, Contag CH, Kaspar RL (2012) Inhibition of CD44 gene expression in human skin models, using self-delivery short interfering RNA administered by dissolvable microneedle arrays. Hum Gene Ther 23:816–823

    Article  PubMed  CAS  Google Scholar 

  • Leachman SA, Hickerson RP, Hull PR, Smith FJ, Milstone LM, Lane EB, Bale SJ, Roop DR, McLean WH, Kaspar RL (2008) Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita. J Dermatol Sci 51:151–157

    Article  PubMed  CAS  Google Scholar 

  • Leachman SA, Hickerson RP, Schwartz ME, Bullough EE, Hutcherson SL, Boucher KM, Hansen CD, Eliason MJ, Srivatsa GS, Kornbrust DJ, Smith FJ, McLean WI, Milstone LM, Kaspar RL (2010) First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther 18:442–446

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Fraga M, Martinez T, Jimenez A (2009) RNA interference technologies and therapeutics: from basic research to products. BioDrugs 23:305–332

    Article  PubMed  CAS  Google Scholar 

  • Martinez T, Wright N, Pañeda C, Jimenez A, Lopez-Fraga M (2011) RNA interference-based therapeutics: harnessing the powers of nature In: Rundfeldt C (ed) Drug development: a case study based insight into modern strategies. InTech, pp 265–312

  • Maxwell MM, Pasinelli P, Kazantsev AG, Brown RH Jr (2004) RNA interference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells. Proc Natl Acad Sci USA 101:3178–3183

    Article  PubMed  CAS  Google Scholar 

  • McGowan MP, Tardif JC, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, Wagener G, Chasan-Taber S (2012) Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE 7:e49006

    Article  PubMed  CAS  Google Scholar 

  • Mulders SA, van Engelen BG, Wieringa B, Wansink DG (2010) Molecular therapy in myotonic dystrophy: focus on RNA gain-of-function. Hum Mol Genet 19:R90–R97

    Article  PubMed  CAS  Google Scholar 

  • Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 45:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Pañeda C, Martinez T, Wright N, Jimenez A (2012) Recent advances in ocular nucleic-based therapies: the silent era. In: Adio A (ed) Ocular diseases. InTech, pp 157–185

  • Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67

    Article  PubMed  CAS  Google Scholar 

  • Perkel JMPD (2012) RNAi therapeutics: the teenage years. Biotechniques 52:355–357

    PubMed  CAS  Google Scholar 

  • Persidis A (1999) Antisense therapeutics. Nat Biotechnol 17:403–404

    Article  PubMed  CAS  Google Scholar 

  • Phillips MI (2005) Antisense therapeutics: a promise waiting to be fulfilled. Methods Mol Med 106:3–10

    PubMed  CAS  Google Scholar 

  • Phillips W, Shannon KM, Barker RA (2008) The current clinical management of Huntington’s disease. Mov Disord 23:1491–1504

    Article  PubMed  Google Scholar 

  • Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, Henderson CE, Aebischer P (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11:423–428

    Article  PubMed  CAS  Google Scholar 

  • Rettig GR, Behlke MA (2011) Progress toward in vivo use of siRNAs-II. Mol Ther 20:483–512

    Article  PubMed  Google Scholar 

  • Rigo F, Hua Y, Krainer AR, Bennett CF (2012) Antisense-based therapy for the treatment of spinal muscular atrophy. J Cell Biol 199:21–25

    Article  PubMed  CAS  Google Scholar 

  • Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  PubMed  CAS  Google Scholar 

  • Samakoglu S, Lisowski L, Budak-Alpdogan T, Usachenko Y, Acuto S, Di Marzo R, Maggio A, Zhu P, Tisdale JF, Riviere I, Sadelain M (2006) A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat Biotechnol 24:89–94

    Article  PubMed  CAS  Google Scholar 

  • Schlosser K, Li Y (2009) Biologically inspired synthetic enzymes made from DNA. Chem Biol 16:311–322

    Article  PubMed  CAS  Google Scholar 

  • Schubert S, Kurreck J (2004) Ribozyme- and deoxyribozyme-strategies for medical applications. Curr Drug Targets 5:667–681

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Mayer G, Zaid A, Rousselet E, Nassoury N, Poirier S, Essalmani R, Prat A (2008) The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol 40:1111–1125

    Article  PubMed  CAS  Google Scholar 

  • Shen TJ, Rogers H, Yu X, Lin F, Noguchi CT, Ho C (2007) Modification of globin gene expression by RNA targeting strategies. Exp Hematol 35:1209–1218

    Article  PubMed  Google Scholar 

  • Singh NN, Shishimorova M, Cao LC, Gangwani L, Singh RN (2009) A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol 6:341–350

    Article  PubMed  CAS  Google Scholar 

  • Sjouke B, Kusters DM, Kastelein JJ, Hovingh GK (2011) Familial hypercholesterolemia: present and future management. Curr Cardiol Rep 13:527–536

    Article  PubMed  CAS  Google Scholar 

  • Smith FJ, Liao H, Cassidy AJ, Stewart A, Hamill KJ, Wood P, Joval I, van Steensel MA, Bjorck E, Callif-Daley F, Pals G, Collins P, Leachman SA, Munro CS, McLean WH (2005) The genetic basis of pachyonychia congenita. J Investig Dermatol Symp Proc 10:21–30

    Article  PubMed  CAS  Google Scholar 

  • Solis AS, Shariat N, Patton JG (2008) Splicing fidelity, enhancers, and disease. Front Biosci 13:1926–1942

    Article  PubMed  CAS  Google Scholar 

  • Stein EA, Dufour R, Gagne C, Gaudet D, East C, Donovan JM, Chin W, Tribble DL, McGowan M (2012) Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation 126:2283–2292

    Article  PubMed  CAS  Google Scholar 

  • Stoller JK, Aboussouan LS (2012) A review of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 185:246–259

    Article  PubMed  CAS  Google Scholar 

  • Sumner CJ (2006) Therapeutics development for spinal muscular atrophy. NeuroRx 3:235–245

    Article  PubMed  CAS  Google Scholar 

  • Tomita N, Morishita R, Tomita T, Ogihara T (2002) Potential therapeutic applications of decoy oligonucleotides. Curr Opin Mol Ther 4:166–170

    PubMed  CAS  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197

    Article  PubMed  CAS  Google Scholar 

  • van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GJ (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686

    Article  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Verhaart IE, Aartsma-Rus A (2012) Gene therapy for Duchenne muscular dystrophy. Curr Opin Neurol 25:588–596

    Article  PubMed  CAS  Google Scholar 

  • Visser ME, Kastelein JJ, Stroes ES (2010) Apolipoprotein B synthesis inhibition: results from clinical trials. Curr Opin Lipidol 21:319–323

    Article  PubMed  CAS  Google Scholar 

  • Visser ME, Witztum JL, Stroes ES, Kastelein JJ (2012) Antisense oligonucleotides for the treatment of dyslipidaemia. Eur Heart J 33:1451–1458

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Zhou H, Huang Y, Xu Z (2006) Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo. Neurobiol Dis 23:578–586

    Article  PubMed  CAS  Google Scholar 

  • Yueksekdag G, Drechsel M, Rossner M, Schmidt C, Kormann M, Illenyi MC, Rudolph C, Rosenecker J (2010) Repeated siRNA application is a precondition for successful mRNA gammaENaC knockdown in the murine airways. Eur J Pharm Biopharm 75:305–310

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, Cohen JC, Hobbs HH (2006) Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 79:514–523

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Covadonga Pañeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, T., Wright, N., López-Fraga, M. et al. Silencing human genetic diseases with oligonucleotide-based therapies. Hum Genet 132, 481–493 (2013). https://doi.org/10.1007/s00439-013-1288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1288-1

Keywords

Navigation