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Abstract Current genome-wide association studies

(GWAS) use commercial genotyping microarrays that can

assay over a million single nucleotide polymorphisms

(SNPs). The number of SNPs is further boosted by advanced

statistical genotype-imputation algorithms and large SNP

databases for reference human populations. The testing of a

huge number of SNPs needs to be taken into account in the

interpretation of statistical significance in such genome-wide

studies, but this is complicated by the non-independence of

SNPs because of linkage disequilibrium (LD). Several pre-

vious groups have proposed the use of the effective number

of independent markers (Me) for the adjustment of multiple

testing, but current methods of calculation for Me are limited

in accuracy or computational speed. Here, we report a more

robust and fast method to calculate Me. Applying this effi-

cient method [implemented in a free software tool named

Genetic type 1 error calculator (GEC)], we systematically

examined the Me, and the corresponding p-value thresholds

required to control the genome-wide type 1 error rate at 0.05,

for 13 Illumina or Affymetrix genotyping arrays, as well as

for HapMap Project and 1000 Genomes Project datasets

which are widely used in genotype imputation as reference

panels. Our results suggested the use of a p-value threshold

of *10-7 as the criterion for genome-wide significance

for early commercial genotyping arrays, but slightly more

stringent p-value thresholds *5 9 10-8 for current or

merged commercial genotyping arrays, *10-8 for all

common SNPs in the 1000 Genomes Project dataset and

*5 9 10-8 for the common SNPs only within genes.

Introduction

Genome-wide association studies (GWAS) can now directly

assay up to 2.5 million single nucleotide polymorphisms

(SNPs) using high-throughput genotyping arrays (Ragoussis

2009). The number of SNPs is further boosted by statistical

genotype-imputation algorithms that make use of large SNP

reference datasets such as the HapMap Project and 1000

Genomes Project (Anderson et al. 2008; Howie et al. 2009).

The number of SNPs is set to increase further with recent

advances in resequencing technology (Metzker 2010). The

testing of such huge numbers of SNPs results in a massive

multiple-testing burden in statistical analysis.

The Bonferroni correction, which resets the significance

threshold from a to a/M in the presence of M independent

tests, is probably the most popular method for multiple-

testing adjustment. However, the Bonferroni correction

assumes independence among the tests considered, so that

Electronic supplementary material The online version of this
article (doi:10.1007/s00439-011-1118-2) contains supplementary
material, which is available to authorized users.

M.-X. Li � J. M. Y. Yeung � S. S. Cherny � P. C. Sham

Department of Psychiatry, The University of Hong Kong,

Pokfulam, Hong Kong

M.-X. Li � P. C. Sham

The Centre for Reproduction, Development and Growth,

The University of Hong Kong, Pokfulam, Hong Kong

M.-X. Li � P. C. Sham

Genome Research Centre, The University of Hong Kong,

Pokfulam, Hong Kong

S. S. Cherny � P. C. Sham

State Key Laboratory for Cognitive and Brain Sciences,

The University of Hong Kong, Pokfulam, Hong Kong

P. C. Sham (&)

Department of Psychiatry, LKS Faculty of Medicine,

University of Hong Kong, Pokfulam, Hong Kong

e-mail: pcsham@hkucc.hku.hk

123

Hum Genet (2012) 131:747–756

DOI 10.1007/s00439-011-1118-2

http://dx.doi.org/10.1007/s00439-011-1118-2


it is inherently conservative when considering SNPs in

linkage disequilibrium (LD). Adjustment for multiple

testing by permutation appropriately takes account of

marker dependency and results in a more powerful test

(Pahl and Schafer 2010), but is computationally expensive.

There have been a number of attempts to extend the con-

ventional Bonferroni procedure to handle correlated tests,

by replacing the actual number of markers being tested (M)

by a smaller value called the effective number of inde-

pendent markers (Me). This results in a test-wise signifi-

cance threshold of a0 ¼ a=Me; which controls the family-

wise error rate (FWER) at a. Conversely, the test-wise

error rate a0 is related to the family-wise error by a ¼
1� ð1� a0ÞMe � Mea0 Efforts were made to assess the

genome-wide significance thresholds after Bonferroni

correction for early GWAS (Dudbridge and Gusnanto

2008; Pe’er et al. 2008). However, it is not known whether

these thresholds are still applicable to current or future

GWAS in which much more SNPs are assayed.

Several methods have been proposed for estimating Me

from the correlations between the genetic markers. Duggal

et al. (2008) suggested the simple method of counting 1 SNP

per LD block in addition to all the SNPs outside of blocks.

Other proposed methods involved the eigenvalues of the LD

measure r2 or Pearson correlation matrix of allele counts

calculated from all possible pairs of SNPs (Cheverud 2001;

Gao et al. 2008; Li and Ji 2005; Nyholt 2004; Galwey 2009).

Two of these methods used the variance of the eigenvalues

(k) to estimate Me (Cheverud 2001; Nyholt 2004). An

important limitation of these variance-based approaches is

that they do not result in additive Me estimates across con-

tiguous sets of SNPs. Li and Ji (2005) suggested summing the

eigenvalues, after substituting 1 for the eigenvalues that are

greater than 1. While generally more accurate than the var-

iance-based approaches, this method can be both conserva-

tive and liberal in different situations (Li and Ji 2005). Gao

et al. suggested defining Me as the number of eigenvalues

which can explain C% of the variation for SNP genotype

data. However, it is unclear how C should be set, as overly

large or small value of C would result in an FWER that is

overly conservative or liberal, respectively (2008). Galwey

(2009) proposed a measure of Me based on an eigenvalue

ratio function. Moskvina and Schmidt suggested a formula to

approximate Me based on the conditional probability of a

Type 1 error in one marker given the test outcome of a second

marker (Moskvina and Schmidt 2008). Several studies have

concluded that the available measures of Me were not suffi-

ciently accurate as a valid substitute for a permutation pro-

cedure (Han et al. 2009; Salyakina et al. 2005; Galwey 2009).

Here we propose a new method to more accurately and

rapidly estimate the effective number of independent tests,

Me, from a given set of SNPs. The ratio of Me to the actual

number of SNPs in a genotyping array is suggested as an

index of the tagging efficiency of an array. Extensive

simulation studies based on both artificial and real LD

patterns were conducted to compare the performance of

this method against five alternative approaches. We then

systematically investigated the Me for 13 popular com-

mercial genotyping arrays from Illumina and Affymetrix,

as well as for the HapMap Project and 1000 Genomes

Project genotype datasets which are widely used as refer-

ence panels in genotype imputation. From this, we provide

a series of suggested Bonferroni p-value thresholds to

correct for the multiple-testing burden in different popu-

lations, when using these arrays and imputed datasets.

Methods and materials

Construction of a new measure of the effective number

of independent tests

Our method is similar to that of Li and Ji (2005), except

that the used eigenvalues are those of the correlation matrix

of association test p values, rather than the correlation

matrix of allele counts, between SNPs. In a previous paper

(Li et al. 2011), we described a polynomial approximation

that allows the correlation matrix of association test

p values to be calculated from the correlation matrix of

allele counts. If the eigenvalues of the correlation matrix of

M association test p values are denoted by ki; then the

effective number of tests, Me is estimated to be M �
PM

i¼1 Iðki [ 1Þðki � 1Þ½ �; where I(x) is an indicator func-

tion. The second part of this formula estimates the redun-

dant number of tests as a result of marker dependency. The

p-value threshold to control FWER to a, using Me in a

Bonferroni procedure, would then be a=Me. The ratio

Re = Me/M, called ‘‘effective ratio’’ for convenience,

measures the extent that the M markers are non-redundant.

A divide-and-conquer algorithm was developed to speed

up the calculation of eigenvalues of large correlation

matrices. SNPs on a chromosome can be partitioned into

multiple loose LD blocks. Within a block, a SNP has strong

or moderate LD with at least one other SNP while SNPs in

different LD blocks are in weak LD (say, r2 \ 0.1). The-

oretically, assume a large correlation matrix, P ¼

A 0

0 B

� �

; has an eigenvalue, k; and an associated eigen-

vector
X
Y

� �

. According to the definition of eigenvalue,

A 0

0 B

� �
X
Y

� �

¼ AX
BY

� �

¼ kX
kY

� �

. Therefore, AX ¼ kX and
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BY ¼ kY . This indicates that matrixes P, A and B share the

same eigenvalues and the LD block partition will not

change the eigenvalues and thus the resulting Me, provided

the blocks are independent. The Me of whole genome is

equal to the summation of the Me calculated within each

LD block. This divide-and-conquer strategy substantially

speeds up the analysis by avoiding calculating eigenvalues

in a huge matrix with thousands of rows and columns,

although, in principle, if blocks cannot be formed the

proposed measure of Me could still be implemented.

Datasets

Local genotype dataset

In the simulation study, we used a genotype dataset of

2,514 Chinese subjects typed by the Illumina Human610-

Quad BeadChip. This sample was originally prepared for

several independent disease-gene mapping projects [(Kung

et al. 2010) and unpublished data]. After standard quality

control procedures of GWAS scan for common variants,

473,931 SNPs were left in the simulation analysis.

HapMap LD dataset

We downloaded the latest version of pair-wise LD data (r2)

of the 11 HapMap panels (http://hapmap.ncbi.nlm.nih.gov/

downloads/ld_data/latest/, Release 27). For the JPT, CHB,

CEU and YRI panels, this release merged SNPs of phases

I ? II ? III and had more SNPs than other 7 panels which

entered the HapMap Project at phase III. Therefore, we

used the LD data of the 4 panels to derive the Me on the 13

commercial genotyping arrays. The numbers of unique

SNPs contained in the 4 LD dataset for JPT, CHB, CEU

and YRI panels were 2,509,881, 2,554,939, 2,776,528 and

3,114,362, respectively. But to provide a reference for

GWAS imputation in more populations, we estimated the

Me and corresponding p-value thresholds in all of the 11

panels as well.

1000 Genomes Project genotype dataset

We downloaded genotypes of 1000 Genomes Project

(released by August 2010) from the website of MACH

(http://www.sph.umich.edu/csg/abecasis/MACH/download/).

In this dataset, there were total 651 individuals separated in

three different panels according to ancestry, ASN (Asian,

194), EUR (European, 283), and AFR (African, 174). The

numbers of overall SNPs in the three panels are 10,832,281

(ASN), 11,914,767 (EUR), and 17,042,857 (AFR), respec-

tively. However, only around half of the SNPs have the

minor allele frequencies over 0.05. We estimated the Me

among SNPs with minor allele frequencies C0.05 because

SNPs with too small minor allele frequency are generally

underpowered in GWAS.

Examining the relationship between LD r2

and correlation of p values from association tests

Genotype data of two bi-allelic SNPs were simulated for a

number of subjects, for a set of LD coefficients, r, and

allele frequencies, under Hardy–Weinberg equilibrium. For

a case–control study, we randomly assigned disease status

to generate 3,000 cases and 3,000 controls; for a quanti-

tative trait study the 6,000 subjects were randomly given

phenotypic scores sampled from the standard normal dis-

tribution N(0, 1). That is, we simulated no correlation

between trait/disease and genotype. An allelic association

test was then performed for each of the two SNPs in the

case–control study and the Wald test for parameters in a

linear regression model was used to examine association in

the quantitative trait study. The procedure was repeated

100,000 times to obtain 100,000 sets of p values, from

which the correlation coefficient of the p values of the two

SNPs,q; was calculated. The allele frequencies and the LD

coefficients, r (Hill and Robertson 1968), were incremented

in steps of 0.05 to generate a series of data points. Repeated

simulations using samples of different sizes were also

conducted.

The relationship between LD r2 and p-value correlation

coefficients was extrapolated by least-squares fitting using

a 6th order polynomial function of the squared pair-wise

allelic correlation coefficient,r02; in Microsoft Excel 2007.

We found that under the null hypothesis p-value correlation

coefficient,q; can be accurately approximated by a 6th

order polynomial function of the squared pair-wise allelic

correlation coefficient r2 (coefficient of determination

R2 = 0.9987) (Supplementary Fig. 1), regardless of allele

frequencies, sample size and study design.

Comparison of type 1 error of various measures

by simulation and permutation

Given the LD patterns and allele frequencies (see supple-

mentary Table 1), a program based on the HapSim algo-

rithm (Montana 2005) was written to generate genotype

data under Hardy–Weinberg equilibrium. We simulated

regions with 1 LD block (6 SNPs), 2 LD blocks (10 SNPs),

6 LD blocks (30 SNPs) or 24 LD blocks (120 SNPs). We

considered the null model where no SNP had an effect on

disease risk. For each scenario, a population of 4,000,000

individuals was generated. A random sample of 3,000 cases

and 3,000 controls was drawn from the population, without

replacement, and subjected to the different methods of

multiple testing. Type 1 error rates under the different
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scenarios were obtained from the proportion of simulated

datasets that resulted in at least one significant p value (set

at 0.05), from 1,000 simulated populations.

We compared the performance of the proposed measure

to 4 different estimates of Me as well as the conventional

Bonferroni correction approach. A permutation procedure

was also carried out for the comparison. The four previous

proposed Me measures have been described in the ‘‘Intro-

duction’’. In the permutation procedure, the phenotypes of

subjects were permuted 1,000 times and the smallest SNP

p value in a region at each permutation was chosen to

generate the empirical distribution. The resulting permuted

p value is equal to the proportion of the generated p values

less than the observed one.

Examining type 1 error using a real dataset

The allelic association test was used to examine association

at each SNP with simulated disease status in the real

genotype dataset of 2,514 Chinese subjects. The pair-wise

LD coefficients, r2, were approximated by the square of

Pearson correlation of genotypes coded as the number of

minor alleles (0, 1 and 2). The Me and type 1 error were

assessed at five regions containing 100–300 SNPs in dif-

ferent chromosomes sampled randomly. SNPs with minor

allele frequency less than 0.05, Hardy–Weinberg equilib-

rium p value less than 0.001, or genotype call rate less than

90% were excluded for this analysis. Type 1 error rates for

these regions were obtained from the proportion of simu-

lated phenotype datasets that resulted in significant p val-

ues (at FWER 0.05), from 50,000 simulated datasets.

Comparison of type 1 error using multivariate normal

distribution (MVN)

On each chromosome, we randomly draw 500 regions with

a random number of SNPs ranging from 2 to 100 in the

same sample of 2,514 Chinese subjects mentioned above.

At each region, Me was estimated by five different methods

and the corresponding p-value threshold, a0; for individual

SNPs to control the FWER (a) at 0.05, was calculated by

Bonferroni correction method, a0 ¼ a=Me. Given a0, the

FWER was calculated by the standard cumulative distri-

bution function of MVN 0;
P

ð Þ:

1�
Z�A

A

f ðxÞdu ¼ 1�
Z�A

A

1

ð2pÞM=2 Pj j1=2
exp½� 1

2
ðx� lÞT

�
X�1

ðx� lÞ�du;

where A ¼ U�1ða0=2Þ; . . .;U�1ða0=2Þ
� �T

is a M dimension

vector and
P

is the genotypic Pearson correlation

coefficient matrix of the M SNPs. We used the R package

mvtnorm (http://cran.r-project.org/web/packages/mvtnorm/

index.html) for the numerical integration of the MVN.

Estimating Me and genome-wide significance

thresholds in 13 genotyping arrays

It was noted that some SNPs in the genotyping arrays were

not in the HapMap Project. For each array, a pair-wise r2

was extracted into a subset from the HapMap LD dataset if

both of its SNPs appeared on the genotyping array. The Me

and effective ratio were first estimated for SNPs in the

subset. The total Me of the genotyping array was then

approximated by the number of SNPs on the array multi-

plied by the effective ratio. The p-value thresholds for

genome-wide significant and highly significant association

were equal to 0.05 and 0.001 divided by the total Me of the

genotyping array.

Results

Comparison of FWER in simulated data

The proposed method was compared to several existing

methods as well as permutation testing (the gold standard)

by simulation studies. Genotypes were simulated according

to artificial LD patterns (Supplementary Table 1), and

phenotypes were randomly assigned. As shown in Table 1,

the use of the proposed Me for Bonferroni correction pro-

duced FWER values that are generally close to the correct

value of 0.05. As expected, standard Bonferroni correction

for M SNPs is conservative. The correction based on

Nyholt’s Me was liberal when there is only one LD block,

but conservative in the multiple-LD-block scenarios. The

Li and Ji (2005) method was liberal in all the simulated

situations, while the Moskvina and Schmidt (2008) method

was slightly conservative in the one-block scenario but

became less conservative in the multiple-LD-block scenarios.

Generally speaking, the type 1 error rates of Moskvina and

Schmidt (2008), Galwey (2009), and the proposed method,

along with those obtained via permutation, were comparable

in the simulated dataset.

Comparison of FWER in real data

We further examined the family-wise type I error rates of

the modified Bonferroni procedure by Me in a real GWAS

genotype dataset, where the phenotypes were re-assigned at

random. The real GWAS data used were on a sample of

2,514 Chinese subjects typed by the Illumina Human610-

Quad BeadChip. Five regions on different chromosomes

were randomly chosen for an empirical validation.

750 Hum Genet (2012) 131:747–756

123

http://cran.r-project.org/web/packages/mvtnorm/index.html
http://cran.r-project.org/web/packages/mvtnorm/index.html


As shown in Table 2, the proposed measure of Me led to

FWERs much closer to the nominal a = 0.05 for all

regions in 50,000 simulated datasets. The simple Bonfer-

roni correction for number of SNPs was conservative, as

expected, as was the Bonferroni correction using Nyholt’s

Me. The methods of Li and Ji (2005) and Galwey (2009)

resulted in quite liberal FWERs. The FWERs based on

Moskvina and Schmidt (2008) were only slightly more

liberal than those based on our new method.

Comparison of FWER via MVN

For some common tests of association, the vector of test

statistics for a single trait over multiple markers asymptoti-

cally follows a MVN, or can be transformed to follow a MVN

(Lin 2005; Seaman and Muller-Myhsok 2005); the covari-

ance matrix of this MVN can be approximated from the

matrix of correlation coefficients between the markers

(Moskvina and Schmidt 2008; Han et al. 2009; Seaman and

Muller-Myhsok 2005; Conneely and Boehnke 2007). Given

a fully characterized MVN, the FWER for any specified

SNP-wise error rate can be calculated by multivariate inte-

gration. However, this is only feasible for a limited number

of SNPs because of the computational burden in calculating

the probabilities from a large-dimensional MVN. We ran-

domly drew 500 genomic regions on each of the 22 auto-

somes and the X chromosome from the real GWAS dataset

mentioned above. The number of markers within each region

was random, ranging from 2 to 100. At each region, the five

different methods were used to estimate Me and to calculate

the test-wise p-value threshold required to obtain a nominal

FWER of 0.05. An estimate of the FWER corresponding to

each test-wise p-value threshold is then obtained from the

MVN. Figure 1 shows a Box plot of the MVN-derived

FWER for the different methods over the 11,500 randomly

selected regions. The proposed method of estimating Me

appears to give MVN-derived FWERs that agree most clo-

sely with the nominal level of 0.05, with least bias and small

variance (Fig. 1). Consistent with the results obtained via

simulation and permutation, the Bonferroni correction using

Nyholt’s Me was generally conservative; the methods of Li

and Ji (2005) and Galwey (2009) resulted in liberal FWERs,

and all three have larger variance across genomic regions.

The FWERs based on Moskvina and Schmidt (2008) were

slightly more liberal but had comparable variance as the

proposed method.

Table 1 Empirical family-wise type 1 error rates (percentages) of alternative multiple testing corrections in simulated datasets

#SNP Bonferroni

for # SNP

Nyholt

(2004)

Li and Ji (2005) Moskvina

and Schmidt (2008)

Galwey

(2009)

Permutation Proposed Me

6 2.14 6.10 5.94 4.02 4.68 4.95 4.81

10 2.70 3.82 6.24 4.45 4.96 4.98 5.01

30 2.84 3.11 6.59 4.67 5.22 4.91 5.28

120 2.89 3.06 6.80 4.94 5.56 4.74 5.60

The nominal FWER is 0.05. We simulated 4 different LD patterns, in which a region may have 1 LD block (including 6 SNPs), 2 LD blocks

(including 10 SNPs), 6 LD blocks (including 30 SNPs) and 24 LD blocks (including 120 SNPs), respectively, 40,000 replicates for each scenario.

See Supplementary Table 1 for the LD patterns

Table 2 Family-wise error rates and effective number of independent tests in real genotype datasets

Chromosome Positiona The observed Nyholt (2004) Li and Ji (2005) Moskvina and Schmidt

(2008)

Galwey (2009) Proposed Me

#SNP Error #SNP Error #SNP Error #SNP Error #SNP Error #SNP Error

1 5733711

6877920

137 2.74% 128.8 2.97% 52.0 6.56% 63.1 5.48% 48.7 7.04% 68.5 5.16%

2 105304539

106766191

271 3.31% 264.7 3.40% 110.0 7.45% 147.1 5.81% 100.1 8.01% 159.3 5.43%

3 178265666

179728246

186 2.97% 180.8 3.06% 85.0 6.40% 99.3 5.54% 78.3 6.84% 106.7 5.11%

6 100078150

102098421

282 2.68% 271.7 2.78% 88.0 7.74% 126.2 5.66% 78.6 8.51% 137.3 5.21%

21 30821453

31663481

118 3.01% 113.2 3.14% 51.0 6.86% 62.9 5.73% 48.8 7.08% 68.1 5.26%

a The coordinates of NCBI Human Reference Genome Build 36.3 was used to denote the regions. The 5 regions were randomly selected. The

Nominal FWER is 0.05; 50,000 simulated replicates were produced for each region

Hum Genet (2012) 131:747–756 751

123



Estimating Me and genome-wide significance

thresholds in 13 genotyping arrays

Applying the proposed method, we systematically esti-

mated Me for 7 Illumina and 6 Affymetrix genotyping

arrays, which have been widely used in GWAS in various

populations. The r2 values in the HapMap LD dataset

(released on April 19, 2009) were used to calculate p-value

correlation coefficients. Similar to the criteria proposed for

genome-wide linkage studies (Lander and Kruglyak 1995),

we calculated p-value thresholds for two genome-wide

significance levels, significant association, and highly sig-

nificant association, in which the FWER per scan are 0.05

and 0.001, respectively. Table 3 shows results based on

HapMap CEU LD dataset. The thresholds for genome-wide

significant association for all genotyping arrays (except for

the Illumina HumanOmni2.5) range from 8.21 9 10-8 to

1.11 9 10-6, which are all slightly less stringent than the

widely-adopted one, 5.0 9 10-8. An association scan

based on the densest Affymetrix array requires a p-value

threshold of 1.08 9 10-7 to declare a significant hit and

the corresponding threshold for Illumina HumanHap 1 M

is 8.21 9 10-8. When combining all of the six Affymetrix

arrays (1,011,854 unique SNPs in total), the p-value

threshold for significant association is 1.04 9 10-7. The

Illumina HumanOmni2.5 seems to have an efficient design

for effective SNPs. Its effective ratio is comparable with

the Illumina HuamHap 1 M although it has doubled

the SNP amount. When all of the seven Illumina arrays

were combined, the p-value threshold turned out to be

*3.5 9 10-8. This amount of markers often happens in

GWAS with genotype imputation, particularly in meta-

analysis of GWAS. Consistent with observation in Barrett

and Cardon (2006), Illumina arrays have larger effective

ratio and require more stringent p-value thresholds to

declare a significant finding than the Affymetrix arrays

with similar number of SNPs. Results based on the Hap-

Map CHB, JPT and YRI LD datasets are shown in Sup-

plementary Table 2. Similarly, except for the Illumina

HumanOmni2.5, the thresholds for genome-wide signifi-

cant association using the other available genotyping arrays

are all slightly less stringent than the widely adopted

threshold, 5.0 9 10-8.

Estimating Me and significance thresholds in datasets

of HapMap and 1000 Genomes Project

We then measured the Me in datasets of HapMap and 1000

Genomes project. As shown in Table 4, although the

number of unique SNPs in the HapMap LD dataset is over

2.5 million in the JPT, CHB and CEU panels, the Me is less

than 1 million and the ratio of Me to the observed number

(i.e., the effective ratio) is low, ranging from 0.26 to 0.30.

The p-value thresholds for significant association are looser

than 5.0 9 10-8. The YRI panel has both the largest

number of SNPs and effective ratio in the HapMap data,

which makes the stringent p-value threshold 3.44 9 10-8.

Supplementary Table 3 shows the estimation results in the

other 7 HapMap panels. There are only around 1.5 million

SNPs in each panel and the effective ratios range from 0.41

Fig. 1 Box plot of MVN-

derived FWERs for five

different methods. For each

method, the nominal FWER was

set to be 0.05. The bottom and

top of each box mark the 25th

and 75th percentile,

respectively, and the band in the

box denotes the 50th percentile.

The lines above and below each

box denote the upper and lower

1.5 interquartile range (IQR)
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to 0.65. However, the p-value thresholds of significant

association are still close to 5.0 9 10-8 in four panels

(LWK, MKK, ASW and MEX). The CHD panel has the

smallest number of SNPs and its p-value threshold for

significant association is close to 10-7.

The 1000 Genomes Project samples are divided into

three panels according to their population ancestry. The

common SNPs with minor allele frequency over 0.05 in the

1000 Genomes Project is over twice as large as the number

of SNPs in the HapMap data. The effective ratios in the

1000 Genomes Project datasets of ASN and EUR panel are

similar to that in the HapMap dataset of the corresponding

populations although the amount of SNPs of the former is

much more than that of the latter. The effective ratio in the

1000 Genomes Project AFR panel is smaller than that of

HapMap YRI panel. The large Me in the 1000 Genomes

Project datasets entails stringent p-value thresholds below

5.0 9 10-8 for significant association. These p-value

thresholds are useful reference for GWAS based on the

genotype imputation using genotypes from HapMap and

1000 Genomes as reference sample.

We also estimated potential effective number of SNPs

within known genes. Gene regions were defined according

to the reference genome coordinates (GRCh37) of its

transcripts with 2000 bp extension at both sides. The

RefGene dataset was used in this analysis, including 37,322

transcripts of 22,610 genes. Table 5 lists the estimated

effective number of SNPs and significance thresholds in the

Table 3 Estimated effective number of SNPs and p-value thresholds using the HapMap CEU sample

Array Name #SNP Effective ratio p-value thresholds*

In total In

HapMap

Me Significant

association

Highly significant

association

Illumina HumanHap Omni2.5 2,450,000 969,415 544,311 0.561 3.63E-08 7.27E-10

1 M 1,199,187 964,612 513,911 0.533 7.83E-08 1.57E-09

650Y 660,557 609,860 393,752 0.646 1.17E-07 2.34E-09

p610-Quad 598,821 561,716 374,316 0.666 1.25E-07 2.51E-09

p550-Duo 561,122 540,047 370,501 0.686 1.30E-07 2.60E-09

CNV370 353,188 338,660 258,305 0.763 1.86E-07 3.71E-09

300-Duo 318,117 317,804 251,244 0.791 1.99E-07 3.98E-09

Affymetrix array Array 6.0 934,968 783,702 388,751 0.496 1.08E-07 2.16E-09

Array 5.0 443,816 384,423 211,592 0.550 2.05E-07 4.09E-09

250 K Nsp 262,264 227,290 141,440 0.622 3.06E-07 6.13E-09

250 K Sty 238,304 204,969 136,228 0.665 3.16E-07 6.31E-09

50 K Hind 240 56,936 48,917 38,773 0.793 1.11E-06 2.22E-08

50 K Xba 240 58,625 53,624 41,219 0.769 1.11E-06 2.22E-08

Merged illumina arrays 3,048,319 1,316,091 617,409 0.469 3.50E-08 6.99E-10

Merged affymetrix arrays 1,011,854 853,412 404,187 0.474 1.04E-07 2.09E-09

* p-value threshold is equal to the FWER/(Total number of SNPs 9 effective ratio)

Table 4 Estimated effective number of SNPs and genome-wide significance thresholds

#SNP* Me Effective ratio p-value thresholds

Significant association Highly significant association

HapMap JPT panel 2,509,881 664,279.75 0.26 7.53E-08 1.51E-09

CHB panel 2,554,939 693,418.45 0.27 7.21E-08 1.44E-09

CEU panel 2,776,528 820,888.14 0.30 6.09E-08 1.22E-09

YRI panel 3,114,362 1,452,799.72 0.47 3.44E-08 6.88E-10

1000 Genomes ASN (Asian) 5,367,975 1,442,762.66 0.27 3.47E-08 6.93E-10

EUR (European) 5,730,196 1,634,900.82 0.29 3.06E-08 6.12E-10

AFR (African) 7,961,101 3,091,723.20 0.39 1.62E-08 3.23E-10

*In the 1000 Genomes dataset, 50.4, 51.9 and 53.2% SNPs with minor allele frequency below 0.05 were filtered out in the ASN, EUR and AFR

panels, respectively
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datasets of 1000 Genomes Project. The effective ratios in

the gene regions are slightly higher than those in the whole

genome. The p-value thresholds for SNPs in gene regions

are roughly twice than that for the whole genome SNPs,

back to a level close to 5 9 10-8.

As expected from known LD patterns of populations

worldwide (Frazer et al. 2007), the effective ratio in the

Asia population is smaller than that in the European popu-

lation and the African population has the largest effective

ratio in both the HapMap and 1000 Genomes Project

datasets. In principle, the effective ratio measures the

average LD degree between SNPs in a marker set. A lower

effective ratio is resulted from higher degree and/or longer-

range of LD between markers. Given the same set of

markers, a larger Re may imply, on average, more miosis

and recombination evens per genome happened in a pop-

ulation as a result of longer population history. Therefore,

the largest effective ratio in the African population also

indirectly supports the longest history of this population

and is consistent with the ‘Out of Africa’ event hypothesis

(Tishkoff et al. 1996; Reich et al. 2001). Correspondingly,

the required p-value threshold for significant association in

the African population is the more stringent those in the

Asian and European population.

A software tool to estimate Me and type I error

We have implemented the proposed measure of effective

number of independent tests and the improved Bonferroni

correction procedure in a software tool named genetic type 1

error calculator (GEC, http://statgenpro.psychiatry.hku.hk/

gec/). Users can input actual genotype data [in either the

conventional linkage pedigree format or PLINK binary

format (Purcell et al. 2007)] or the HapMap LD data into

GEC to quickly calculate Me of the whole genome or at some

specified genomic regions. Table 6 lists the running time

GEC took to estimate Me by the proposed method on 6

Illumina genotyping arrays using HapMap CEU LD data. If a

set of SNP p values for genetic association tests is input, GEC

will straightforwardly report the significant SNPs according

to the improved Bonferroni correction procedure. GEC has

both user-friendly command line and web-based graphic

online interface.

Discussion

In the present study, we proposed a more robust measure of the

effective number of independent tests, Me, to control FWER

for genetic association studies. Compared with previous

methods (Gao et al. 2008; Li and Ji 2005; Moskvina and

Schmidt 2008; Nyholt 2004; Galwey 2009), our measure is

more robust to variable LD patterns in real datasets. Moreover,

the new measure is additive across multiple distinct LD

blocks. Capitalizing on this property, we developed a divide-

and-conquer algorithm to handle large datasets, which can

substantially relieve the computational burden when scanning

millions of SNPs by avoiding calculating eigenvalues of the

massive correlation matrix. We have demonstrated that this

new method yields correct type I error rates and behaves

similarly to the gold standard of permutation.

Pe’er et al. (2008) estimated the multiple testing burden

in GWAS through simulation studies using data on the

HapMap ENCODE regions to emulate an infinitely dense

map, analogous to the Lander and Kruglyak approach for

linkage analysis (Lander and Kruglyak 1995), and arrived

at the commonly accepted genome-wide significance

threshold of 5 9 10-8. Similarly, by subsampling geno-

types at increasing density and extrapolating to infinite

density, Dudbridge and Gusnanto, 2008) estimated the

genome-wide significance threshold to be about

7.2 9 10-8. We noted that for 12 arrays widely used by

previous GWAS, the recommended threshold for a

Table 5 Estimated effective number of SNPs and significance thresholds in gene regions

#SNP* Me Effective ratio p-value thresholds

Significant association Highly significant association

ASN (Asian) 2,427,784 675845.93 0.28 7. 40E-8 1.48E-9

EUR (European) 2,591,410 765,693.14 0.30 6.53E-8 1.31E-9

AFR (African) 3,603,810 1,448,010.91 0.40 3.45E-8 6.91E-10

*51.0, 52.5 and 53.8% SNPs with minor allele frequency below 0.05 were excluded in the ASN, EUR and AFR panels, respectively

Table 6 The running time GEC need to scan various genotyping

arrays

Array name #SNP Running time (min)a

1 M-Duo 1,199,187 *7.8

650Y 660,557 *3.1

p610-Quad 598,821 *2.7

p550-Duo 561,122 *2.5

CNV370 353,188 *1

300-Duo 318,117 *0.9

The configuration of the computer doing the test is

Intel(R) Xeon(R) X5670 @ 2.97 GHz, and Ubuntu 11.04 64bit; One

GB maximal memory was set for GEC
a The time needed to read HapMap LD data was also included
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genome-wide error rate of 0.05, 5.0 9 10-8, is conserva-

tive. For some studies, using arrays of *500,000 or

600,000 SNPs, a p-value threshold of *10-7 can be safely

adopted without inflation of type I error. However, for

GWAS using one of the latest Illumina arrays, Human-

Omni2.5, a threshold as stringent as 5 9 10-8 or even

slightly smaller is needed. This is also true for GWAS

employing imputed common SNPs based on HapMap data.

For GWAS with several million imputed SNPs from the

1000 Genomes Project dataset, a slightly more stringent p-

value threshold (10-8) is necessary. However, if one only

examines the imputed SNPs within known genes, the

threshold 5.0 9 10-8 can be used.

As previously noted (Pe’er et al. 2006; Hao et al. 2008),

GWAS employing Affymetrix arrays allow use of a less

stringent p-value threshold than those employing Illumina

with similar amount of markers because Affymetrix ran-

domly selected their SNPs while Illumina used a tagging

approach in designing their arrays. Consistent with previ-

ous reports (Barrett and Cardon 2006; Pe’er et al. 2008),

the multiple-testing burden for a sample from Japanese and

Chinese populations is less heavy than that for a sample

from Caucasian and African populations. Hence, the exact

thresholds of individual GWAS slightly vary across

genotyping platforms and sampling populations. We pro-

vided a user friendly tool, GEC, to quickly calculate exact

genome-wide thresholds.

The effective ratio, Re, we proposed can aid in marker

selection for genetic association study design as well.

Undoubtedly, a design with Re close to 0 is not cost-effi-

cient because this implies that most typed markers will be

redundant and little independent information will be

obtained. The larger the Re is, the more independent

genotype information the SNP marker set will have.

Meanwhile, it should be noted that solely using Re to

evaluate a design may not be sufficient. It is possible that

only one of two imperfectly correlated markers is in strong

LD with an untyped disease susceptibility locus (DSL).

Exclusion of one marker can definitely increase the Re but

can result in a loss of statistical power if the only marker in

strong LD with a DSL is removed. Therefore, there is not a

perfect relationship between Re and statistical power.

In the present paper, we did not investigate the perfor-

mance of the proposed method in an imputed GWAS

dataset. The imputation quality, which is often related to

imputation quality thresholds employed to clean the data-

set, imputation algorithms and even matching degree

between the study sample and reference panels, may affect

the estimation of Me in an imputed genotype dataset. If the

quality of imputed genotypes are poor and the pair-wise

LD between SNPs calculated by the imputed genotypes is

largely different from that by actual genotypes, the esti-

mation of Me using the imputed dataset will be not reliable.

On the other hand, if the imputation quality is good and the

pair-wise LD between SNPs calculated according to the

imputed genotypes is very similar to that by actual geno-

types, the proposed method can be safely applied to esti-

mate the Me in the imputed GWAS datasets. In the present

study, we estimated the Me in the public datasets (including

the HapMap Project panels and 1000 Genomes Project

panels) which are widely used as reference panels for

GWAS imputation. The Me and p-value thresholds in these

reference panels can be regarded as reference boundaries

for the imputed GWAS datasets. In practice, one can

employ our tool, GEC, to quickly estimate the Me in an

specific imputed GWAS datasets given the imputation

quality is good.
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